- Browse by Author
Browsing by Author "Yang, Junrong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Endothelial actin depolymerization mediates NADPH oxidase-superoxide production during flow reversal(American Physiological Society (APS), 2014-01-01) Choy, Jenny S.; Lu, Xiao; Yang, Junrong; Zhang, Zhen-Du; Kassab, Ghassan S.; Department of Biomedical Engineering, Purdue School of Engineering and Technology, IUPUISlow moving blood flow and changes in flow direction, e.g., negative wall shear stress, can cause increased superoxide (O2·−) production in vascular endothelial cells. The mechanism by which shear stress increases O2·− production, however, is not well established. We tested the hypothesis that actin depolymerization, which occurs during flow reversal, mediates O2·− production in vascular endothelial cells via NADPH oxidase, and more specifically, the subunit p47phox. Using a swine model, we created complete blood flow reversal in one carotid artery, while the contralateral vessel maintained forward blood flow as control. We measured actin depolymerization, NADPH oxidase activity, and reactive oxygen species (ROS) production in the presence of various inhibitors. Flow reversal was found to induce actin depolymerization and a 3.9 ± 1.0-fold increase in ROS production as compared with forward flow. NADPH oxidase activity was 1.4 ± 0.2 times higher in vessel segments subjected to reversed blood flow when measured by a direct enzyme assay. The NADPH oxidase subunits gp91phox (Nox2) and p47phox content in the vessels remained unchanged after 4 h of flow reversal. In contrast, p47phox phosphorylation was increased in vessels with reversed flow. The response caused by reversed flow was reduced by in vivo treatment with jasplakinolide, an actin stabilizer (only a 1.7 ± 0.3-fold increase). Apocynin (an antioxidant) prevented reversed flow-induced ROS production when the animals were treated in vivo. Cytochalasin D mimicked actin depolymerization in vitro and caused a 5.2 ± 3.0-fold increase in ROS production. These findings suggest that actin filaments play an important role in negative shear stress-induced ROS production by potentiating NADPH oxidase activity, and more specifically, the p47phox subunit in vascular endothelium.Item Response of Various Conduit Arteries in Tachycardia- and Volume Overload-Induced Heart Failure(Public Library of Science, 2014-08-15) Lu, Xiao; Zhang, Zhen-Du; Guo, Xiaomei; Choy, Jenny Susana; Yang, Junrong; Svendsen, Mark; Kassab, Ghassan; Surgery, School of MedicineAlthough hemodynamics changes occur in heart failure (HF) and generally influence vascular function, it is not clear whether various HF models will affect the conduit vessels differentially or whether local hemodynamic forces or systemic factors are more important determinants of vascular response in HF. Here, we studied the hemodynamic changes in tachycardia or volume-overload HF swine model (created by either high rate pacing or distal abdominal aortic-vena cava fistula, respectively) on carotid, femoral, and renal arteries function and molecular expression. The ejection fraction was reduced by 50% or 30% in tachycardia or volume-overload model in four weeks, respectively. The LV end diastolic volume was increased from 65 ± 22 to 115 ± 78 ml in tachycardia and 67 ± 19 to 148 ± 68 ml in volume-overload model. Flow reversal was observed in diastolic phase in carotid artery of both models and femoral artery in volume-overload model. The endothelial function was also significantly impaired in carotid and renal arteries of tachycardia and volume-overload animals. The endothelial dysfunction was observed in femoral artery of volume-overload animals but not tachycardia animals. The adrenergic receptor-dependent contractility decreased in carotid and femoral arteries of tachycardia animals. The protein expressions of NADPH oxidase subunits increased in the three arteries and both animal models while expression of MnSOD decreased in carotid artery of tachycardia and volume-overload model. In conclusion, different HF models lead to variable arterial hemodynamic changes but similar vascular and molecular expression changes that reflect the role of both local hemodynamics as well as systemic changes in HF.