- Browse by Author
Browsing by Author "Yan, Wenying"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Identification of Intrinsic Disorder in Complexes from the Protein Data Bank(ACS Publications, 2020-07-14) Zhou, Jianhong; Oldfield, Christopher J.; Yan, Wenying; Shen, Bairong; Dunker, A.Keith; Biochemistry and Molecular Biology, School of MedicineBackground: Intrinsically disordered proteins or regions (IDPs or IDRs) lack stable structures in solution, yet often fold upon binding with partners. IDPs or IDRs are highly abundant in all proteomes and represent a significant modification of sequence → structure → function paradigm. The Protein Data Bank (PDB) includes complexes containing disordered segments bound to globular proteins, but the molecular mechanisms of such binding interactions remain largely unknown. Results: In this study, we present the results of various disorder predictions on a nonredundant set of PDB complexes. In contrast to their structural appearances, many PDB proteins were predicted to be disordered when separated from their binding partners. These predicted-to-be-disordered proteins were observed to form structures depending upon various factors, including heterogroup binding, protein/DNA/RNA binding, disulfide bonds, and ion binding. Conclusions: This study collects many examples of disorder-to-order transition in IDP complex formation, thus revealing the unusual structure–function relationships of IDPs and providing an additional support for the newly proposed paradigm of the sequence → IDP/IDR ensemble → function.Item Intrinsically disordered domains: Sequence ➔ disorder ➔ function relationships(Wiley, 2019-07-12) Zhou, Jianhong; Oldfield, Christopher J.; Yan, Wenying; Shen, Bairong; Dunker, A. Keith; Biochemistry and Molecular Biology, School of MedicineDisordered domains are long regions of intrinsic disorder that ideally have conserved sequences, conserved disorder, and conserved functions. These domains were first noticed in protein–protein interactions that are distinct from the interactions between two structured domains and the interactions between structured domains and linear motifs or molecular recognition features (MoRFs). So far, disordered domains have not been systematically characterized. Here, we present a bioinformatics investigation of the sequence–disorder–function relationships for a set of probable disordered domains (PDDs) identified from the Pfam database. All the Pfam seed proteins from those domains with at least one PDD sequence were collected. Most often, if a set contains one PDD sequence, then all members of the set are PDDs or nearly so. However, many seed sets have sequence collections that exhibit diverse proportions of predicted disorder and structure, thus giving the completely unexpected result that conserved sequences can vary substantially in predicted disorder and structure. In addition to the induction of structure by binding to protein partners, disordered domains are also induced to form structure by disulfide bond formation, by ion binding, and by complex formation with RNA or DNA. The two new findings, (a) that conserved sequences can vary substantially in their predicted disorder content and (b) that homologues from a single domain can evolve from structure to disorder (or vice versa), enrich our understanding of the sequence ➔ disorder ensemble ➔ function paradigm.