- Browse by Author
Browsing by Author "Yan, Jie"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A C-X-C Chemokine Receptor Type 2–Dominated Cross-talk between Tumor Cells and Macrophages Drives Gastric Cancer Metastasis(AACR, 2019-06) Zhou, Zhijun; Xia, Guanggai; Xiang, Zhen; Liu, Mingyang; Wei, Zhewei; Yan, Jie; Chen, Wei; Zhu, Jintao; Awasthi, Niranjan; Sun, Xiaotian; Fung, Kar-Ming; He, Yulong; Li, Min; Zhang, Changhua; Surgery, School of MedicinePurpose: C-X-C chemokine receptor type 2 (CXCR2) is a key regulator that drives immune suppression and inflammation in tumor microenvironment. CXCR2-targeted therapy has shown promising results in several solid tumors. However, the underlying mechanism of CXCR2-mediated cross-talk between gastric cancer cells and macrophages still remains unclear. Experimental Design: The expression of CXCR2 and its ligands in 155 human gastric cancer tissues was analyzed via immunohistochemistry, and the correlations with clinical characteristics were evaluated. A coculture system was established, and functional assays, including ELISA, transwell, cell viability assay, and qPCR, were performed to determine the role of the CXCR2 signaling axis in promoting gastric cancer growth and metastasis. A xenograft gastric cancer model and a lymph node metastasis model were established to study the function of CXCR2 in vivo. Results: CXCR2 expression is associated with the prognosis of patients with gastric cancer (P = 0.002). Of all the CXCR2 ligands, CXCL1 and CXCL5 can significantly promote migration of gastric cancer cells. Macrophages are the major sources of CXCL1 and CXCL5 in the gastric cancer microenvironment, and promote migration of gastric cancer cells through activating a CXCR2/STAT3 feed-forward loop. Gastric cancer cells secrete TNF-α to induce release of CXCL1 and CXCL5 from macrophages. Inhibiting CXCR2 pathway of gastric cancer cells can suppress migration and metastasis of gastric cancer in vitro and in vivo. Conclusions: Our study suggested a previously uncharacterized mechanism through which gastric cancer cells interact with macrophages to promote tumor growth and metastasis, suggesting that CXCR2 may serve as a promising therapeutic target to treat gastric cancer.Item The EbpA-RpoN Regulatory Pathway of the Pathogen Leptospira interrogans Is Essential for Survival in the Environment(American Society for Microbiology, 2017-01-17) Hu, Wei-Lin; Pappas, Christopher J.; Zhang, Jun-Jie; Yang, You-Yun; Yan, Jie; Picardeau, Mathieu; Yang, X. Frank; Microbiology and Immunology, School of MedicineLeptospira interrogans is the agent of leptospirosis, a reemerging zoonotic disease. It is transmitted to humans through environmental surface waters contaminated by the urine of mammals chronically infected by pathogenic strains able to survive in water for long periods. Little is known about the regulatory pathways underlying environmental sensing and host adaptation of L. interrogans during its enzootic cycle. This study identifies the EbpA-RpoN regulatory pathway in L. interrogans In this pathway, EbpA, a σ54 activator and putative prokaryotic enhancer-binding protein (EBP), and the alternative sigma factor RpoN (σ54) control expression of at least three genes, encoding AmtB (an ammonium transport protein) and two proteins of unknown function. Electrophoresis mobility shift assay demonstrated that recombinant RpoN and EbpA bind to the promoter region and upstream of these three identified genes, respectively. Genetic disruption of ebpA in L. interrogans serovar Manilae virtually abolished expression of the three genes, including amtB in two independent ebpA mutants. Complementation of the ebpA mutant restored expression of these genes. Intraperitoneal inoculation of gerbils with the ebpA mutant did not affect mortality. However, the ebpA mutant had decreased cell length in vitro and had a significantly lowered cell density at stationary phase when grown with l-alanine as the sole nitrogen source. Furthermore, the ebpA mutant has dramatically reduced long-term survival ability in water. Together, these studies identify a regulatory pathway, the EbpA-RpoN pathway, that plays an important role in the zoonotic cycle of L. interrogans IMPORTANCE: Leptospirosis is a reemerging disease with global importance. However, our understanding of gene regulation of the spirochetal pathogen Leptospira interrogans is still in its infancy, largely due to the lack of robust tools for genetic manipulation of this spirochete. Little is known about how the pathogen achieves its long-term survival in the aquatic environment. By utilizing bioinformatic, genetic, and biochemical methods, we discovered a regulatory pathway in L. interrogans, the EbpA-RpoN pathway, and demonstrated that this pathway plays an important role in environmental survival of this pathogen.Item The sigma factor σ54 is required for the long-term survival of Leptospira biflexa in water(Wiley, 2018-04-06) Zhang, Jun-Jie; Hu, Wei-Lin; Yang, Youyun; Li, Hongxia; Picardeau, Mathieu; Yan, Jie; Yang, X. Frank; Microbiology and Immunology, School of MedicineLeptospira spp. comprise both pathogenic and free-living saprophytic species. Little is known about the environmental adaptation and survival mechanisms of Leptospira. Alternative sigma factor, σ54 (RpoN) is known to play an important role in environmental and host adaptation in many bacteria. In this study, we constructed an rpoN mutant by allele exchange, and the complemented strain in saprophytic L. biflexa. Transcriptome analysis revealed that expression of several genes involved in nitrogen uptake and metabolism, including amtB1, glnB-amtB2, ntrX and narK, were controlled by σ54 . While wild-type L. biflexa could not grow under nitrogen-limiting conditions but was able to survive under such conditions and recover rapidly, the rpoN mutant was not. The rpoN mutant also had dramatically reduced ability to survive long-term in water. σ54 appears to regulate expression of amtB1, glnK-amtB2, ntrX and narK in an indirect manner. However, we identified a novel nitrogen-related gene, LEPBI_I1011, whose expression was directly under the control of σ54 (herein renamed as rcfA for RpoN-controlled factor A). Taken together, our data reveal that the σ54 regulatory network plays an important role in the long-term environmental survival of Leptospira spp.Item Transcriptional Responses of Leptospira interrogans to Host Innate Immunity: Significant Changes in Metabolism, Oxygen Tolerance, and Outer Membrane(Public Library of Science, 2010-10-26) Xue, Feng; Dong, Haiyan; Wu, Jinyu; Wu, Zuowei; Hu, Weilin; Sun, Aihua; Troxell, Bryan; Yang, X. Frank; Yan, Jie; Microbiology and Immunology, School of MedicineBackground Leptospira interrogans is the major causative agent of leptospirosis. Phagocytosis plays important roles in the innate immune responses to L. interrogans infection, and L. interrogans can evade the killing of phagocytes. However, little is known about the adaptation of L. interrogans during this process. Methodology/Principal Findings To better understand the interaction of pathogenic Leptospira and innate immunity, we employed microarray and comparative genomics analyzing the responses of L. interrogans to macrophage-derived cells. During this process, L. interrogans altered expressions of many genes involved in carbohydrate and lipid metabolism, energy production, signal transduction, transcription and translation, oxygen tolerance, and outer membrane proteins. Among them, the catalase gene expression was significantly up-regulated, suggesting it may contribute to resisting the oxidative pressure of the macrophages. The expressions of several major outer membrane protein (OMP) genes (e.g., ompL1, lipL32, lipL41, lipL48 and ompL47) were dramatically down-regulated (10–50 folds), consistent with previous observations that the major OMPs are differentially regulated in vivo. The persistent down-regulations of these major OMPs were validated by immunoblotting. Furthermore, to gain initial insight into the gene regulation mechanisms in L. interrogans, we re-defined the transcription factors (TFs) in the genome and identified the major OmpR TF gene (LB333) that is concurrently regulated with the major OMP genes, suggesting a potential role of LB333 in OMPs regulation. Conclusions/Significance This is the first report on global responses of pathogenic Leptospira to innate immunity, which revealed that the down-regulation of the major OMPs may be an immune evasion strategy of L. interrogans, and a putative TF may be involved in governing these down-regulations. Alterations of the leptospiral OMPs up interaction with host antigen-presenting cells (APCs) provide critical information for selection of vaccine candidates. In addition, genome-wide annotation and comparative analysis of TFs set a foundation for further studying regulatory networks in Leptospira spp.