- Browse by Author
Browsing by Author "Yakubov, Bakhtiyor"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item 17β-Estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via BMPR2 and apelin(American Society for Clinical Investigation, 2021-03-15) Frump, Andrea L.; Albrecht, Marjorie; Yakubov, Bakhtiyor; Breuils-Bonnet, Sandra; Nadeau, Valérie; Tremblay, Eve; Potus, Francois; Omura, Junichi; Cook, Todd; Fisher, Amanda; Rodriguez, Brooke; Brown, R. Dale; Stenmark, Kurt R.; Rubinstein, C. Dustin; Krentz, Kathy; Tabima, Diana M.; Li, Rongbo; Sun, Xin; Chesler, Naomi C.; Provencher, Steeve; Bonnet, Sebastien; Lahm, Tim; Medicine, School of MedicineWomen with pulmonary arterial hypertension (PAH) exhibit better right ventricular (RV) function and survival than men; however, the underlying mechanisms are unknown. We hypothesized that 17β-estradiol (E2), through estrogen receptor α (ER-α), attenuates PAH-induced RV failure (RVF) by upregulating the procontractile and prosurvival peptide apelin via a BMPR2-dependent mechanism. We found that ER-α and apelin expression were decreased in RV homogenates from patients with RVF and from rats with maladaptive (but not adaptive) RV remodeling. RV cardiomyocyte apelin abundance increased in vivo or in vitro after treatment with E2 or ER-α agonist. Studies employing ER-α–null or ER-β–null mice, ER-α loss-of-function mutant rats, or siRNA demonstrated that ER-α is necessary for E2 to upregulate RV apelin. E2 and ER-α increased BMPR2 in pulmonary hypertension RVs and in isolated RV cardiomyocytes, associated with ER-α binding to the Bmpr2 promoter. BMPR2 is required for E2-mediated increases in apelin abundance, and both BMPR2 and apelin are necessary for E2 to exert RV-protective effects. E2 or ER-α agonist rescued monocrotaline pulmonary hypertension and restored RV apelin and BMPR2. We identified what we believe to be a novel cardioprotective E2/ER-α/BMPR2/apelin axis in the RV. Harnessing this axis may lead to novel RV-targeted therapies for PAH patients of either sex.Item 17β-Estradiol mediates superior adaptation of right ventricular function to acute strenuous exercise in female rats with severe pulmonary hypertension(APS Journals, 2016-08-01) Lahm, Tim; Frump, Andrea L.; Albrecht, Marjorie E.; Fisher, Amanda J.; Cook, Todd G.; Jones, Thomas J.; Yakubov, Bakhtiyor; Whitson, Jordan; Fuchs, Robyn K.; Liu, Aiping; Chesler, Naomi C.; Brown, M. Beth; Medicine, School of Medicine17β-Estradiol (E2) exerts protective effects on right ventricular (RV) function in pulmonary arterial hypertension (PAH). Since acute exercise-induced increases in afterload may lead to RV dysfunction in PAH, we sought to determine whether E2 allows for superior RV adaptation after an acute exercise challenge. We studied echocardiographic, hemodynamic, structural, and biochemical markers of RV function in male and female rats with sugen/hypoxia (SuHx)-induced pulmonary hypertension, as well as in ovariectomized (OVX) SuHx females, with or without concomitant E2 repletion (75 μg·kg−1·day−1) immediately after 45 min of treadmill running at 75% of individually determined maximal aerobic capacity (75% aerobic capacity reserve). Compared with males, intact female rats exhibited higher stroke volume and cardiac indexes, a strong trend for better RV compliance, and less pronounced increases in indexed total pulmonary resistance. OVX abrogated favorable RV adaptations, whereas E2 repletion after OVX markedly improved RV function. E2's effects on pulmonary vascular remodeling were complex and less robust than its RV effects. Postexercise hemodynamics in females with endogenous or exogenous E2 were similar to hemodynamics in nonexercised controls, whereas OVX rats exhibited more severely altered postexercise hemodynamics. E2 mediated inhibitory effects on RV fibrosis and attenuated increases in RV collagen I/III ratio. Proapoptotic signaling, endothelial nitric oxide synthase phosphorylation, and autophagic flux markers were affected by E2 depletion and/or repletion. Markers of impaired autophagic flux correlated with endpoints of RV structure and function. Endogenous and exogenous E2 exerts protective effects on RV function measured immediately after an acute exercise challenge. Harnessing E2's mechanisms may lead to novel RV-directed therapies.Item Estrogen Receptor-α Exerts Endothelium-Protective Effects and Attenuates Pulmonary Hypertension(American Thoracic Society, 2023) Frump, Andrea L.; Yakubov, Bakhtiyor; Walts, Avram; Fisher, Amanda; Cook, Todd; Chesler, Naomi C.; Lahm, Tim; Medicine, School of MedicineItem Estrogen receptor-α prevents right ventricular diastolic dysfunction and fibrosis in female rats(American Physiological Society, 2020-12) Cheng, Tik-Chee; Philip, Jennifer L.; Tabima, Diana M.; Kumari, Santosh; Yakubov, Bakhtiyor; Frump, Andrea L.; Hacker, Timothy A.; Bellofiore, Alessandro; Li, Rongbo; Sun, Xin; Goss, Kara N.; Lahm, Tim; Chesler, Naomi C.; Medicine, School of MedicineAlthough women are more susceptible to pulmonary arterial hypertension (PAH) than men, their right ventricular (RV) function is better preserved. Estrogen receptor-α (ERα) has been identified as a likely mediator for estrogen protection in the RV. However, the role of ERα in preserving RV function and remodeling during pressure overload remains poorly understood. We hypothesized that loss of functional ERα removes female protection from adverse remodeling and is permissive for the development of a maladapted RV phenotype. Male and female rats with a loss-of-function mutation in ERα (ERαMut) and wild-type (WT) littermates underwent RV pressure overload by pulmonary artery banding (PAB). At 10 wk post-PAB, WT and ERαMut demonstrated RV hypertrophy. Analysis of RV pressure waveforms demonstrated RV-pulmonary vascular uncoupling and diastolic dysfunction in female, but not male, ERαMut PAB rats. Similarly, female, but not male, ERαMut exhibited increased RV fibrosis, comprised primarily of thick collagen fibers. There was an increased protein expression ratio of TIMP metallopeptidase inhibitor 1 (Timp1) to matrix metalloproteinase 9 (Mmp9) in female ERαMut compared with WT PAB rats, suggesting less collagen degradation. RNA-sequencing in female WT and ERαMut RV revealed kallikrein-related peptidase 10 (Klk10) and Jun Proto-Oncogene (Jun) as possible mediators of female RV protection during PAB. In summary, ERα in females is protective against RV-pulmonary vascular uncoupling, diastolic dysfunction, and fibrosis in response to pressure overload. ERα appears to be dispensable for RV adaptation in males. ERα may be a mediator of superior RV adaptation in female patients with PAH. NEW & NOTEWORTHY Using a novel loss-of-function mutation in estrogen receptor-α (ERα), we demonstrate that female, but not male, ERα mutant rats display right ventricular (RV)-vascular uncoupling, diastolic dysfunction, and fibrosis following pressure overload, indicating a sex-dependent role of ERα in protecting against adverse RV remodeling. TIMP metallopeptidase inhibitor 1 (Timp1), matrix metalloproteinase 9 (Mmp9), kallikrein-related peptidase 10 (Klk10), and Jun Proto-Oncogene (Jun) were identified as potential mediators in ERα-regulated pathways in RV pressure overload.Item Hypoxia Upregulates Estrogen Receptor β in Pulmonary Artery Endothelial Cells in a HIF-1α-Dependent Manner(American Thoracic Society, 2018-07) Frump, Andrea L.; Selej, Mona; Wood, Jordan A.; Albrecht, Marjorie; Yakubov, Bakhtiyor; Petrache, Irina; Lahm, Tim; Cellular & Integrative Physiology, IU School of Medicine17β-Estradiol (E2) attenuates hypoxia-induced pulmonary hypertension (HPH) through estrogen receptor (ER)-dependent effects, including inhibition of hypoxia-induced endothelial cell proliferation; however, the mechanisms responsible for this remain unknown. We hypothesized that the protective effects of E2 in HPH are mediated through hypoxia-inducible factor 1α (HIF-1α)-dependent increases in ERβ expression. Sprague-Dawley rats and ERα or ERβ knockout mice were exposed to hypobaric hypoxia for 2-3 weeks. The effects of hypoxia were also studied in primary rat or human pulmonary artery endothelial cells (PAECs). Hypoxia increased expression of ERβ, but not ERα, in lungs from HPH rats as well as in rat and human PAECs. ERβ mRNA time dependently increased in PAECs exposed to hypoxia. Normoxic HIF-1α/HIF-2α stabilization increased PAEC ERβ, whereas HIF-1α knockdown decreased ERβ abundance in hypoxic PAECs. In turn, ERβ knockdown in hypoxic PAECs increased HIF-2α expression, suggesting a hypoxia-sensitive feedback mechanism. ERβ knockdown in hypoxic PAECs also decreased expression of the HIF inhibitor prolyl hydroxylase 2 (PHD2), whereas ERβ activation increased PHD2 and decreased both HIF-1α and HIF-2α, suggesting that ERβ regulates the PHD2/HIF-1α/HIF-2α axis during hypoxia. Whereas hypoxic wild-type or ERα knockout mice treated with E2 demonstrated less pulmonary vascular remodeling and decreased HIF-1α after hypoxia compared with untreated hypoxic mice, ERβ knockout mice exhibited increased HIF-2α and an attenuated response to E2 during hypoxia. Taken together, our results demonstrate a novel and potentially therapeutically targetable mechanism whereby hypoxia, via HIF-1α, increases ERβ expression and the E2-ERβ axis targets PHD2, HIF-1α, and HIF-2α to attenuate HPH development.Item Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts(Nature Publishing Group, 2016-01) Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David; Department of Medicine, IU School of MedicineThree-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts.Item Investigational new drug enabling angiotensin oral-delivery studies to attenuate pulmonary hypertension(Elsevier, 2020-03) Daniell, Henry; Mangu, Venkata; Yakubov, Bakhtiyor; Park, Jiyoung; Habibi, Peyman; Shi, Yao; Gonnella, Patricia A.; Fisher, Amanda; Cook, Todd; Zeng, Lily; Kawut, Steven M.; Lahm, Tim; Cellular and Integrative Physiology, School of MedicinePulmonary arterial hypertension (PAH) is a deadly and uncurable disease characterized by remodeling of the pulmonary vasculature and increased pulmonary artery pressure. Angiotensin Converting Enzyme 2 (ACE2) and its product, angiotensin-(1-7) [ANG-(1-7)] were expressed in lettuce chloroplasts to facilitate affordable oral drug delivery. Lyophilized lettuce cells were stable up to 28 months at ambient temperature with proper folding, assembly of CTB-ACE2/ANG-(1-7) and functionality. When the antibiotic resistance gene was removed, Ang1-7 expression was stable in subsequent generations in marker-free transplastomic lines. Oral gavage of monocrotaline-induced PAH rats resulted in dose-dependent delivery of ANG-(1-7) and ACE2 in plasma/tissues and PAH development was attenuated with decreases in right ventricular (RV) hypertrophy, RV systolic pressure, total pulmonary resistance and pulmonary artery remodeling. Such attenuation correlated well with alterations in the transcription of Ang-(1-7) receptor MAS and angiotensin II receptor AGTRI as well as IL-1β and TGF-β1. Toxicology studies showed that both male and female rats tolerated ~10-fold ACE2/ANG-(1-7) higher than efficacy dose. Plant cell wall degrading enzymes enhanced plasma levels of orally delivered protein drug bioencapsulated within plant cells. Efficient attenuation of PAH with no toxicity augurs well for clinical advancement of the first oral protein therapy to prevent/treat underlying pathology for this disease.Item Small Molecules Target the Interaction between Tissue Transglutaminase and Fibronectin(American Association for Cancer Research, 2019-06-01) Sima, Livia Elena; Yakubov, Bakhtiyor; Zhang, Sheng; Condello, Salvatore; Grigorescu, Arabela A.; Nwani, Nkechiyere G.; Chen, Lan; Schiltz, Gary E.; Arvanitis, Constandina; Zhang, Zhong-Yin; Matei, Daniela; Medicine, School of MedicineTissue transglutaminase (TG2) is a multi-functional protein, with enzymatic, GTP-ase and scaffold properties. TG2 interacts with fibronectin (FN) through its N-terminus domain, stabilizing integrin complexes, which regulate cell adhesion to the matrix. Through this mechanism, TG2 participates in key steps involved in metastasis in ovarian and other cancers. High throughput screening identified several small molecule inhibitors (SMIs) for the TG2/FN complex. Rational medicinal chemistry optimization of the hit compound (TG53) led to second generation analogues (MT1–6). ELISA demonstrated that these analogues blocked TG2/FN interaction and bio-layer interferometry (BLI) showed that the SMIs bound to TG2. The compounds also potently inhibited cancer cell adhesion to FN and decreased outside-in signaling mediated through the focal adhesion kinase (FAK). Blockade of TG2/FN interaction by the small molecules caused membrane ruffling, delaying the formation of stable focal contacts and mature adhesions points and disrupted organization of the actin cytoskeleton. In an in vivo model measuring intraperitoneal (ip) dissemination, MT4 and MT6 inhibited the adhesion of ovarian cancer (OC) cells to the peritoneum. Pre-treatment with MT4 also sensitized OC cells to paclitaxel. The data support continued optimization of the new class of SMIs that block the TG2/FN complex at the interface between cancer cells and the tumor niche.Item Tissue Transglutaminase Activates Cancer-Associated Fibroblasts and Contributes to Gemcitabine Resistance in Pancreatic Cancer(Elsevier, 2016-11) Lee, Jiyoon; Yakubov, Bakhtiyor; Ivan, Cristina; Jones, David R.; Caperell-Grant, Andrea; Fishel, Melissa; Cardenas, Horacio; Matei, Daniela; Department of Otolaryngology--Head & Neck Surgery, School of MedicineResistance to chemotherapy is a hallmark of pancreatic ductal adenocarcinoma (PDA) and has been partly attributed to the dense desmoplastic stroma, which forms a protective niche for cancer cells. Tissue transglutaminase (TG2), a Ca(2+)-dependent enzyme, is secreted by PDA cells and cross-links proteins in the tumor microenvironment (TME) through acyl-transfer between glutamine and lysine residues, promoting PDA growth. The objective of the current study was to determine whether secreted TG2 by PDA cells alters the response of pancreatic tumors to gemcitabine. Orthotopic pancreatic xenografts and co-culture of PDA and stromal cells were employed to determine the mechanisms by which TG2 alters tumor-stroma interactions and response to gemcitabine. Analysis of the pancreatic The Cancer Genome Atlas (TCGA) database demonstrated that increased TG2 expression levels correlate with worse overall survival (hazard ratio=1.37). Stable TG2 knockdown in PDA cells led to decreased size of pancreatic xenografts and increased sensitivity to gemcitabine in vivo. However, TG2 downregulation did not increase cytotoxicity of gemcitabine in vitro. Additionally, multivessel density and gemcitabine uptake in pancreatic tumor tissue, as measured by mass spectrometry (MS-HPLC), were not significantly different in tumors expressing TG2 versus tumors in which TG2 was knocked down. Fibroblasts, stimulated by TG2 secreted by PDA cells, secrete laminin A1, which protects cancer cells from gemcitabine-induced cytotoxicity. In all, our results demonstrate that TG2 secreted in the pancreatic TME orchestrates the cross talk between cancer cells and stroma, impacting tumor growth and response to chemotherapy. Our study supports TG2 inhibition to increase the antitumor effects of gemcitabine in PDA.Item Tissue Transglutaminase Mediated Tumor-Stroma Interaction Promotes Pancreatic Cancer Progression.(AACR, 2015-10-01) Lee, Jiyoon; Condello, Salvatore; Yakubov, Bakhtiyor; Emerson, Robert; Caperell-Grant, Andrea; Hitomi, Kiyotaka; Xie, Jingwu; Matei, Daniela; Department of Biochemistry and Molecular Biology, IU School of MedicinePurpose: Aggressive pancreatic cancer is commonly associated with a dense desmoplastic stroma, which forms a protective niche for cancer cells. The objective of the study was to determine the functions of tissue transglutaminase (TG2), a Ca2+-dependent enzyme which crosslinks proteins through transamidation and is abundantly expressed by pancreatic cancer cells in the pancreatic stroma. Experimental Design: Orthotopic pancreatic xenografts and co-culture systems tested the mechanisms by which the enzyme modulates tumor-stroma interactions. Results: We show that TG2 secreted by cancer cells effectively molds the stroma by crosslinking collagen, which in turn activates fibroblasts and stimulates their proliferation. The stiff fibrotic stromal reaction conveys mechanical cues to cancer cells leading to activation of the YAP/TAZ transcription factors, promoting cell proliferation and tumor growth. Stable knockdown of TG2 in pancreatic cancer cells led to decreased size of pancreatic xenografts. Conclusions: Taken together, our results demonstrate that TG2 secreted in the tumor microenvironment orchestrates the crosstalk between cancer cells and stroma fundamentally impacting tumor growth. Our study supports TG2 inhibition in the pancreatic stroma as a novel strategy to block pancreatic cancer progression.