- Browse by Author
Browsing by Author "Xu, Yuanyuan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item CNC-bZIP protein NFE2L1 regulates osteoclast differentiation in antioxidant-dependent and independent manners(Elsevier, 2021-11-06) Liu, Zhiyuan; Wang, Huihui; Hou, Yongyong; Yang, Yang; Jia, Jingkun; Wu, Jinzhi; Zuo, Zhuo; Gao, Tianchang; Ren, Suping; Bian, Yiying; Liu, Shengnan; Fu, Jingqi; Sun, Yongxin; Li, Jiliang; Yamamoto, Masayuki; Zhang, Qiang; Xu, Yuanyuan; Pi, Jingbo; Biology, School of ScienceFine-tuning of osteoclast differentiation (OD) and bone remodeling is crucial for bone homeostasis. Dissecting the mechanisms regulating osteoclastogenesis is fundamental to understanding the pathogenesis of various bone disorders including osteoporosis and arthritis. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1), which belongs to the CNC-bZIP family of transcription factors, orchestrates a variety of physiological processes and stress responses. While Nfe2l1 gene may be transcribed into multiple alternatively spliced isoforms, the biological function of the different isoforms of NFE2L1 in bone metabolism, osteoclastogenesis in particular, has not been reported. Here we demonstrate that knockout of all isoforms of Nfe2l1 transcripts specifically in the myeloid lineage in mice [Nfe2l1(M)-KO] results in increased activity of osteoclasts, decreased bone mass and worsening of osteoporosis induced by ovariectomy and aging. In comparison, LysM-Cre-mediated Nfe2l1 deletion has no significant effect on the osteoblast and osteocytes. Mechanistic investigations using bone marrow cells and RAW 264.7 cells revealed that deficiency of Nfe2l1 leads to accelerated and elevated OD, which is attributed, at least in part, to enhanced accumulation of ROS in the early stage of OD and expression of nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1α (Nfatc1/α). In addition, NFE2L1 regulates the transcription of multiple antioxidant genes and Nfatc1/α and OD in an isoform-specific manner. While long isoforms of NFE2L1 function as accelerators of induction of Nfatc1/α and antioxidant genes and OD, the short isoform NFE2L1-453 serves as a brake that keeps the long isoforms’ accelerator effects in check. These findings provide a novel insight into the regulatory roles of NFE2L1 in osteoclastogenesis and highlight that NFE2L1 is essential in regulating bone remodeling and thus may be a valuable therapeutic target for bone disorders.Item GPR68 Is a Neuroprotective Proton Receptor in Brain Ischemia(Lippincott, Williams & Wilkins, 2020-12) Wang, Tao; Zhou, Guokun; He, Mindi; Xu, Yuanyuan; Rusyniak, W.G.; Xu, Yan; Ji, Yonghua; Simon, Roger P.; Xiong, Zhi-Gang; Zha, Xiang-ming; Obstetrics and Gynecology, School of MedicineBrain acidosis is prevalent in stroke and other neurological diseases. Acidosis can have paradoxical injurious and protective effects. The purpose of this study is to determine whether a proton receptor exists in neurons to counteract acidosis-induced injury. Methods: We analyzed the expression of proton-sensitive GPCRs (G protein-coupled receptors) in the brain, examined acidosis-induced signaling in vitro, and studied neuronal injury using in vitro and in vivo mouse models. Results: GPR68, a proton-sensitive GPCR, was present in both mouse and human brain, and elicited neuroprotection in acidotic and ischemic conditions. GPR68 exhibited wide expression in brain neurons and mediated acidosis-induced PKC (protein kinase C) activation. PKC inhibition exacerbated pH 6-induced neuronal injury in a GPR68-dependent manner. Consistent with its neuroprotective function, GPR68 overexpression alleviated middle cerebral artery occlusion–induced brain injury. Conclusions: These data expand our knowledge on neuronal acid signaling to include a neuroprotective metabotropic dimension and offer GPR68 as a novel therapeutic target to alleviate neuronal injuries in ischemia and multiple other neurological diseases.Item Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration(Springer Nature, 2013) Wilson, Marenda A.; Kwon, YoungHo; Xu, Yuanyuan; Chung, Woo-Hyun; Chi, Peter; Niu, Hengyao; Mayle, Ryan; Chen, Xuefeng; Malkova, Anna; Sung, Patrick; Ira, Grzegorz; Biology, School of ScienceDuring DNA repair by homologous recombination (HR), DNA synthesis copies information from a template DNA molecule. Multiple DNA polymerases have been implicated in repair-specific DNA synthesis, but it has remained unclear whether a DNA helicase is involved in this reaction. A good candidate DNA helicase is Pif1, an evolutionarily conserved helicase in Saccharomyces cerevisiae important for break-induced replication (BIR) as well as HR-dependent telomere maintenance in the absence of telomerase found in 10-15% of all cancers. Pif1 has a role in DNA synthesis across hard-to-replicate sites and in lagging-strand synthesis with polymerase δ (Polδ). Here we provide evidence that Pif1 stimulates DNA synthesis during BIR and crossover recombination. The initial steps of BIR occur normally in Pif1-deficient cells, but Polδ recruitment and DNA synthesis are decreased, resulting in premature resolution of DNA intermediates into half-crossovers. Purified Pif1 protein strongly stimulates Polδ-mediated DNA synthesis from a D-loop made by the Rad51 recombinase. Notably, Pif1 liberates the newly synthesized strand to prevent the accumulation of topological constraint and to facilitate extensive DNA synthesis via the establishment of a migrating D-loop structure. Our results uncover a novel function of Pif1 and provide insights into the mechanism of HR.