ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Xu, Xinxiu"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Case Report: An association of left ventricular outflow tract obstruction with 5p deletions
    (Frontiers Media, 2024-10-18) Mascho, Kira; Yatsenko, Svetlana A.; Lo, Cecilia W.; Xu, Xinxiu; Johnson, Jennifer; Helvaty, Lindsey R.; Burns Wechsler, Stephanie; Murali, Chaya N.; Lalani, Seema R.; Garg, Vidu; Hodge, Jennelle C.; McBride, Kim L.; Ware, Stephanie M.; Lin, Jiuann-Huey Ivy; Pediatrics, School of Medicine
    Introduction: 5p deletion syndrome, also called Cri-du-chat syndrome 5p is a rare genetic syndrome with reports up to 36% of patients are associated with congenital heart defects. We investigated the association between left outflow tract obstruction and Cri-du-chat syndrome. Methods: A retrospective review of the abnormal microarray cases with congenital heart defects in Children's Hospital of Pittsburgh and the Cytogenomics of Cardiovascular Malformations Consortium. Results: A retrospective review at nine pediatric centers identified 4 patients with 5p deletions and left outflow tract obstruction (LVOTO). Three of these patients had additional copy number variants. We present data suggesting an association of LVOTO with 5p deletion with high mortality in the presence of additional copy number variants. Conclusion: A rare combination of 5p deletion and left ventricular outflow obstruction was observed in the registry of copy number variants and congenital heart defects.
  • Loading...
    Thumbnail Image
    Item
    Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability
    (Elsevier, 2022-02-15) Teekakirikul, Polakit; Zhu, Wenjuan; Xu, Xinxiu; Young, Cullen B.; Tan, Tuantuan; Smith, Amanda M.; Wang, Chengdong; Peterson, Kevin A.; Gabriel, George C.; Ho, Sebastian; Sheng, Yi; de Bellaing, Anne Moreau; Sonnenberg, Daniel A.; Lin, Jiuann-huey; Fotiou, Elisavet; Tenin, Gennadiy; Wang, Michael X.; Wu, Yijen L.; Feinstein, Timothy; Devine, William; Gou, Honglan; Bais, Abha S.; Glennon, Benjamin J.; Zahid, Maliha; Wong, Timothy C.; Ahmad, Ferhaan; Rynkiewicz, Michael J.; Lehman, William J.; Keavney, Bernard; Alastalo, Tero-Pekka; Freckmann, Mary-Louise; Orwig, Kyle; Murray, Steve; Ware, Stephanie M.; Zhao, Hui; Feingold, Brian; Lo, Cecilia W.; Pediatrics, School of Medicine
    Analysis of large-scale human genomic data has yielded unexplained mutations known to cause severe disease in healthy individuals. Here, we report the unexpected recovery of a rare dominant lethal mutation in TPM1, a sarcomeric actin-binding protein, in eight individuals with large atrial septal defect (ASD) in a five-generation pedigree. Mice with Tpm1 mutation exhibit early embryonic lethality with disrupted myofibril assembly and no heartbeat. However, patient-induced pluripotent-stem-cell-derived cardiomyocytes show normal beating with mild myofilament defect, indicating disease suppression. A variant in TLN2, another myofilament actin-binding protein, is identified as a candidate suppressor. Mouse CRISPR knock-in (KI) of both the TLN2 and TPM1 variants rescues heart beating, with near-term fetuses exhibiting large ASD. Thus, the role of TPM1 in ASD pathogenesis unfolds with suppression of its embryonic lethality by protective TLN2 variant. These findings provide evidence that genetic resiliency can arise with genetic suppression of a deleterious mutation.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University