ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Xu, Aihua"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Author Correction: Inhibitory effects of dopamine receptor D1 agonist on mammary tumor and bone metastasis
    (Springer Nature, 2022-11-03) Minami, Kazumasa; Liu, Shengzhi; Liu, Yang; Chen, Andy; Wan, Qiaoqiao; Na, Sungsoo; Li, Bai‑Yan; Matsuura, Nariaki; Koizumi, Masahiko; Yin, Yukun; Gan, Liangying; Xu, Aihua; Li, Jiliang; Nakshatri, Harikrishna; Yokota, Hiroki; Biomedical Engineering, School of Engineering and Technology
    This corrects the article "Inhibitory Effects of Dopamine Receptor D1 Agonist on Mammary Tumor and Bone Metastasis" in volume 7, 45686. doi: 10.1038/srep45686
  • Loading...
    Thumbnail Image
    Item
    Inhibiting checkpoint kinase 1 protects bone from bone resorption by mammary tumor in a mouse model
    (Impact Journals, 2018-01-19) Liu, Shengzhi; Liu, Yang; Minami, Kazumasa; Chen, Andy; Wan, Qiaoqiao; Yin, Yukun; Gan, Liangying; Xu, Aihua; Matsuura, Nariaki; Koizumi, Masahiko; Liu, Yunlong; Na, Sungsoo; Li, Jiliang; Nakshatri, Harikrishna; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and Technology
    DNA damage response plays a critical role in tumor growth, but little is known about its potential role in bone metabolism. We employed selective inhibitors of Chk1 and examined their effects on the proliferation and migration of mammary tumor cells as well as the development of osteoblasts and osteoclasts. Further, using a mouse model of bone metastasis we evaluated the effects of Chk1 inhibitors on bone quality. Chk1 inhibitors blocked the proliferation, survival, and migration of tumor cells in vitro and suppressed the development of bone-resorbing osteoclasts by downregulating NFATc1. In the mouse model, Chk1 inhibitor reduced osteolytic lesions and prevented mechanical weakening of the femur and tibia. Analysis of RNA-seq expression data indicated that the observed effects were mediated through the regulation of eukaryotic translation initiation factor 2 alpha, stress to the endoplasmic reticulum, S100 proteins, and bone remodeling-linked genes. Our findings suggest that targeting Chk1 signaling without adding DNA damaging agents may protect bone from degradation while suppressing tumor growth and migration.
  • Loading...
    Thumbnail Image
    Item
    Inhibitory Effects of Dopamine Receptor D1 Agonist on Mammary Tumor and Bone Metastasis
    (Springer NPG, 2017-03-04) Minami, Kazumasa; Liu, Shengzhi; Liu, Yang; Chen, Andy; Wan, Qiaoqiao; Na, Sungsoo; Li, Bai-Yan; Matsuura, Nariaki; Koizumi, Masahiko; Yin, Yukun; Gan, Liangying; Xu, Aihua; Li, Jiliang; Nakshatri, Harikrishna; Yokota, Hiroki; Biomedical Engineering, School of Engineering and Technology
    Dopaminergic signaling plays a critical role in the nervous system, but little is known about its potential role in breast cancer and bone metabolism. A screening of ~1,000 biologically active compounds revealed that a selective agonist of dopamine receptor D1 (DRD1), A77636, inhibited proliferation of 4T1.2 mammary tumor cells as well as MDA-MB-231 breast cancer cells. Herein, we examined the effect of A77636 on bone quality using a mouse model of bone metastasis from mammary tumor. A77636 inhibited migration of cancer cells in a DRD1-dependent fashion and suppressed development of bone-resorbing osteoclasts by downregulating NFATc1 through the elevation of phosphorylation of eIF2α. In the mouse model of bone metastasis, A77636 reduced osteolytic lesions and prevented mechanical weakening of the femur and tibia. Collectively, we expect that dopaminergic signaling might provide a novel therapeutic target for breast cancer and bone metastasis.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University