- Browse by Author
Browsing by Author "Xiong, Zehui"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A trustless architecture of blockchain-enabled metaverse(Elsevier, 2023-03) Xu, Minghui; Guo, Yihao; Hu, Qin; Xiong, Zehui; Yu, Dongxiao; Cheng, Xuizhen; Computer and Information Science, School of ScienceMetaverse has rekindled human beings’ desire to further break space-time barriers by fusing the virtual and real worlds. However, security and privacy threats hinder us from building a utopia. A metaverse embraces various techniques, while at the same time inheriting their pitfalls and thus exposing large attack surfaces. Blockchain, proposed in 2008, was regarded as a key building block of metaverses. it enables transparent and trusted computing environments using tamper-resistant decentralized ledgers. Currently, blockchain supports Decentralized Finance (DeFi) and Non-fungible Tokens (NFT) for metaverses. However, the power of a blockchain has not been sufficiently exploited. In this article, we propose a novel trustless architecture of blockchain-enabled metaverse, aiming to provide efficient resource integration and allocation by consolidating hardware and software components. To realize our design objectives, we provide an On-Demand Trusted Computing Environment (OTCE) technique based on local trust evaluation. Specifically, the architecture adopts a hypergraph to represent a metaverse, in which each hyperedge links a group of users with certain relationship. Then the trust level of each user group can be evaluated based on graph analytics techniques. Based on the trust value, each group can determine its security plan on demand, free from interference by irrelevant nodes. Besides, OTCEs enable large-scale and flexible application environments (sandboxes) while preserving a strong security guarantee.Item Joint User Association and Resource Pricing for Metaverse: Distributed and Centralized Approaches(IEEE, 2022-10) Huang, Xumin; Zhong, Weifeng; Nie, Jiangtian; Hu, Qin; Xiong, Zehui; Kang, Jiawen; Quek, Tony Q. S.; Computer and Information Science, School of ScienceMetaverse as the next-generation Internet provides users with physical-virtual world interactions. To improve the quality of immersive experience, users access to Metaverse service providers (MSPs) and purchase bandwidth resource to reduce the communication latency of the Metaverse services. The MSPs decide selling price of the bandwidth resource to maximize the revenue. This leads to a joint user association and resource pricing problem between all users and MSPs. To tackle the problem, we formulate a Stackelberg game where the MSPs are game leaders and users are game followers. We resolve the Stackelberg equilibrium via the distributed and centralized approaches, according to different privacy requirements. In the distributed approach, the MSPs compete against each other to maximize the individual revenue, and a user selects an MSP in a probabilistic manner. The Stackelberg equilibrium is achieved in a privacy-friendly way. In the centralized approach, all MSPs and users accept the unified management and their strategies are instructed. The centralized approach acquires the superior decision-making performance but sacrifices the privacy of the game players. Finally, we provide numerical results to demonstrate the effectiveness and efficiency of our schemes.Item Nothing Wasted: Full Contribution Enforcement in Federated Edge Learning(IEEE Xplore, 2021-10) Hu, Qin; Wang, Shengling; Xiong, Zehui; Cheng, Xiuzhen; Computer and Information Science, School of ScienceThe explosive amount of data generated at the network edge makes mobile edge computing an essential technology to support real-time applications, calling for powerful data processing and analysis provided by machine learning (ML) techniques. In particular, federated edge learning (FEL) becomes prominent in securing the privacy of data owners by keeping the data locally used to train ML models. Existing studies on FEL either utilize in-process optimization or remove unqualified participants in advance. In this paper, we enhance the collaboration from all edge devices in FEL to guarantee that the ML model is trained using all available local data to accelerate the learning process. To that aim, we propose a collective extortion (CE) strategy under the imperfect-information multi-player FEL game, which is proved to be effective in helping the server efficiently elicit the full contribution of all devices without worrying about suffering from any economic loss. Technically, our proposed CE strategy extends the classical extortion strategy in controlling the proportionate share of expected utilities for a single opponent to the swiftly homogeneous control over a group of players, which further presents an attractive trait of being impartial for all participants. Both theoretical analysis and experimental evaluations validate the effectiveness and fairness of our proposed scheme.Item zk-PCN: A Privacy-Preserving Payment Channel Network Using zk-SNARKs(IEEE, 2022-11) Yu, Wenxuan; Xu, Minghui; Yu, Dongxiao; Cheng, Xiuzhen; Hu, Qin; Xiong, Zehui; Computer and Information Science, School of SciencePayment channel network (PCN) is a layer-two scaling solution that enables fast off-chain transactions but does not involve on-chain transaction settlement. PCNs raise new privacy issues including balance secrecy, relationship anonymity and payment privacy. Moreover, protecting privacy causes low transaction success rates. To address this dilemma, we propose zk-PCN, a privacy-preserving payment channel network using zk-SNARKs. We prevent from exposing true balances by setting up public balances instead. Using public balances, zk-PCN can guarantee high transaction success rates and protect PCN privacy with zero-knowledge proofs. Additionally, zk-PCN is compatible with the existing routing algorithms of PCNs. To support such compatibility, we propose zk-IPCN to improve zk-PCN with a novel proof generation (RPG) algorithm. zk-IPCN reduces the overheads of storing channel information and lowers the frequency of generating zero-knowledge proofs. Finally, extensive simulations demonstrate the effectiveness and efficiency of zk-PCN in various settings.