- Browse by Author
Browsing by Author "Xing, Wen"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia(Ferrata Storti Foundation, 2017-06) Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D.; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A.; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D. Wade; Yang, Feng-Chun; Pediatrics, School of MedicineFanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation.Item Hyperactive RAS/PI3-K/MAPK Signaling Cascade in Migration and Adhesion of Nf1 Haploinsufficient Mesenchymal Stem/Progenitor Cells(MDPI, 2015-06) Zhou, Yuan; He, Yongzheng; Sharma, Richa; Xing, Wen; Estwick, Selina A.; Wu, Xiaohua; Rhodes, Steven D.; Xu, Mingjiang; Yang, Feng-Chun; Department of Pediatrics, Indiana University School of MedicineNeurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in the NF1 tumor suppressor gene, which affect approximately 1 out of 3000 individuals. Patients with NF1 suffer from a range of malignant and nonmalignant manifestations such as plexiform neurofibromas and skeletal abnormalities. We previously demonstrated that Nf1 haploinsufficiency in mesenchymal stem/progenitor cells (MSPCs) results in impaired osteoblastic differentiation, which may be associated with the skeletal manifestations in NF1 patients. Here we sought to further ascertain the role of Nf1 in modulating the migration and adhesion of MSPCs of the Nf1 haploinsufficient (Nf1+/−) mice. Nf1+/− MSPCs demonstrated increased nuclear-cytoplasmic ratio, increased migration, and increased actin polymerization as compared to wild-type (WT) MSPCs. Additionally, Nf1+/− MSPCs were noted to have significantly enhanced cell adhesion to fibronectin with selective affinity for CH271 with an overexpression of its complimentary receptor, CD49e. Nf1+/− MSPCs also showed hyperactivation of phosphoinositide 3-kinase (PI3-K) and mitogen activated protein kinase (MAPK) signaling pathways when compared to WT MSPCs, which were both significantly reduced in the presence of their pharmacologic inhibitors, LY294002 and PD0325901, respectively. Collectively, our study suggests that both PI3-K and MAPK signaling pathways play a significant role in enhanced migration and adhesion of Nf1 haploinsufficient MSPCs.Item Interleukin 8/KC enhances G-CSF induced hematopoietic stem/progenitor cell mobilization in Fancg deficient mice(AME Publishing Company, 2014) Li, Yan; Xing, Wen; He, Yong-Zheng; Chen, Shi; Rhodes, Steven D.; Yuan, Jin; Zhou, Yuan; Shi, Jun; Bai, Jie; Zhang, Feng-Kui; Yuan, Wei-Ping; Cheng, Tao; Xu, Ming-Jiang; Yang, Feng-Chun; Department of Pediatrics, IU School of MedicineBACKGROUND: Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by a progressive bone marrow aplasia, chromosomal instability, and acquisition of malignancies. Successful hematopoietic cell transplantation (HCT) for FA patients is challenging due to hypersensitivity to DNA alkylating agents and irradiation of FA patients. Early mobilization of autologous stem cells from the bone marrow has been thought to be ideal prior to the onset of bone marrow failure, which often occurs during childhood. However, the markedly decreased response of FA hematopoietic stem cells to granulocyte colony-stimulating factor (G-CSF) is circumventive of this autologous HCT approach. To-date, the mechanism for defective stem cell mobilization in G-CSF treated FA patients remains unclear. METHODS: Fancg heterozygous (Fancg (+/-)) mice utilized in these studies. Student's t-test and one-way ANOVA were used to evaluate statistical differences between WT and Fancg (-/-) cells. Statistical significance was defined as P values less than 0.05. RESULTS: Fancg deficient (Fancg (-/-)) mesenchymal stem/progenitor cells (MSPCs) produce significant lower levels of KC, an interleukin-8 (IL-8) related chemoattractant protein in rodents, as compared to wild type cells. Combinatorial administration of KC and G-CSF significantly increased the mobilization of hematopoietic stem/progenitor cells (HSPCs) in Fancg (-/-) mice. CONCLUSIONS: In summary, our results suggest that KC/IL-8 could be proved useful in the synergistic mobilization of FA HSPCs in combination with G-CSF.