- Browse by Author
Browsing by Author "Xia, Yong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Aberrant Expression Profiles of lncRNAs and Their Associated Nearby Coding Genes in the Hippocampus of the SAMP8 Mouse Model with AD(Cell Press, 2020-06-05) Hong, Honghai; Mo, Yousheng; Li, Dongli; Xu, Zhiheng; Liao, Yanfang; Yin, Ping; Liu, Xinning; Xia, Yong; Fang, Jiansong; Wang, Qi; Fang, Shuhuan; Pathology and Laboratory Medicine, School of MedicineThe senescence-accelerated mouse prone 8 (SAMP8) mouse model is a useful model for investigating the fundamental mechanisms involved in the age-related learning and memory deficits of Alzheimer's disease (AD), while the SAM/resistant 1 (SAMR1) mouse model shows normal features. Recent evidence has shown that long non-coding RNAs (lncRNAs) may play an important role in AD pathogenesis. However, a comprehensive and systematic understanding of the function of AD-related lncRNAs and their associated nearby coding genes in AD is still lacking. In this study, we collected the hippocampus, the main area of AD pathological processes, of SAMP8 and SAMR1 animals and performed microarray analysis to identify aberrantly expressed lncRNAs and their associated nearby coding genes, which may contribute to AD pathogenesis. We identified 3,112 differentially expressed lncRNAs and 3,191 differentially expressed mRNAs in SAMP8 mice compared to SAMR1 mice. More than 70% of the deregulated lncRNAs were intergenic and exon sense-overlapping lncRNAs. Gene Ontology (GO) and pathway analyses of the AD-related transcripts were also performed and are described in detail, which imply that metabolic process reprograming was likely related to AD. Furthermore, six lncRNAs and six mRNAs were selected for further validation of the microarray results using quantitative PCR, and the results were consistent with the findings from the microarray. Moreover, we analyzed 780 lincRNAs (also called long "intergenic" non-coding RNAs) and their associated nearby coding genes. Among these lincRNAs, AK158400 had the most genes nearby (n = 13), all of which belonged to the histone cluster 1 family, suggesting regulation of the nucleosome structure of the chromosomal fiber by affecting nearby genes during AD progression. In addition, we also identified 97 aberrant antisense lncRNAs and their associated coding genes. It is likely that these dysregulated lncRNAs and their associated nearby coding genes play a role in the development and/or progression of AD.Item ATGL promotes the proliferation of hepatocellular carcinoma cells via the p‐AKT signaling pathway(Wiley, 2019-11) Liu, Meiling; Yu, Xuegao; Lin, Liying; Deng, Jiankai; Wang, Kanglong; Su, Baochang; Xia, Yong; Tang, Xiaohua; Hong, Honghai; Pathology and Laboratory Medicine, School of MedicineAbnormal metabolism, including abnormal lipid metabolism, is a hallmark of cancer cells. Some studies have demonstrated that the lipogenic pathway might promote the development of hepatocellular carcinoma (HCC). However, the role of adipose triglyceride lipase (ATGL) in hepatocellular carcinoma cells has not been elucidated. We evaluated the function of ATGL in hepatocellular carcinoma using methyl azazolyl blue and migration assay through overexpression of ATGL in HepG2 cells. Quantitative reverse‐transcription polymerase chain reaction and Western blot analyses were used to assess the mechanisms of ATGL in hepatocellular carcinoma. In the current study, we first constructed and transiently transfected ATGL into hepatocellular carcinoma cells. Secondly, we found that ATGL promoted the proliferation of hepatoma cell lines via upregulating the phosphorylation of AKT, but did not affect the metastatic ability of HCC cells. Moreover, the p‐AKT inhibitor significantly eliminated the effect of ATGL on the proliferation of hepatoma carcinoma cells. Taken together, our results indicated that ATGL promotes hepatocellular carcinoma cells proliferation through upregulation of the AKT signaling pathway.