ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Xia, Fan"

Now showing 1 - 8 of 8
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Correction to: De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome
    (Biomed Central, 2019-03-25) Vetrini, Francesco; McKee, Shane; Rosenfeld, Jill A.; Suri, Mohnish; Lewis, Andrea M.; Nugent, Kimberly Margaret; Roeder, Elizabeth; Littlejohn, Rebecca O.; Holder, Sue; Zhu, Wenmiao; Alaimo, Joseph T.; Graham, Brett; Harris, Jill M.; Gibson, James B.; Pastore, Matthew; McBride, Kim L.; Komara, Makanko; Al-Gazali, Lihadh; Al Shamsi, Aisha; Fanning, Elizabeth A.; Wierenga, Klaas J.; Scott, Daryl A.; Ben-Neriah, Ziva; Meiner, Vardiella; Cassuto, Hanoch; Elpeleg, Orly; Lloyd Holder Jr, J.; Burrage, Lindsay C.; Seaver, Laurie H.; Van Maldergem, Lionel; Mahida, Sonal; Soul, Janet S.; Marlatt, Margaret; Matyakhina, Ludmila; Vogt, Julie; Gold, June-Anne; Park, Soo-Mi; Varghese, Vinod; Lampe, Anne K.; Kumar, Ajith; Lees, Melissa; Holder-Espinasse, Muriel; McConnell, Vivienne; Bernhard, Birgitta; Blair, Ed; Harrison, Victoria; Muzny, Donna M.; Gibbs, Richard A.; Elsea, Sarah H.; Posey, Jennifer E.; Bi, Weimin; Lalani, Seema; Xia, Fan; Yang, Yaping; Eng, Christine M.; Lupski, James R.; Liu, Pengfei; Medical and Molecular Genetics, School of Medicine
    It was highlighted that the original article [1] contained a typographical error in the Results section. Subject 17 was incorrectly cited as Subject 1. This Correction article shows the revised statement. The original article has been updated.
  • Loading...
    Thumbnail Image
    Item
    Lessons learned from additional research analyses of unsolved clinical exome cases
    (BioMed Central, 2017-03-21) Eldomery, Mohammad K.; Coban-Akdemir, Zeynep; Harel, Tamar; Rosenfeld, Jill A.; Gambin, Tomasz; Stray-Pedersen, Asbjørg; Küry, Sébastien; Mercier, Sandra; Lessel, Davor; Denecke, Jonas; Wiszniewski, Wojciech; Penney, Samantha; Liu, Pengfei; Bi, Weimin; Lalani, Seema R.; Schaaf, Christian P.; Wangler, Michael F.; Bacino, Carlos A.; Lewis, Richard Alan; Potocki, Lorraine; Graham, Brett H.; Belmont, John W.; Scaglia, Fernando; Orange, Jordan S.; Jhangiani, Shalini N.; Chiang, Theodore; Doddapaneni, Harsha; Hu, Jianhong; Muzny, Donna M.; Xia, Fan; Beaudet, Arthur L.; Boerwinkle, Eric; Eng, Christine M.; Plon, Sharon E.; Sutton, V. Reid; Gibbs, Richard A.; Posey, Jennifer E.; Yang, Yaping; Lupski, James R.; Department of Pathology and Laboratory Medicine, IU School of Medicine
    BACKGROUND: Given the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery. METHODS: We designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e. unsolved clinical exomes). Such cases were recruited to a research laboratory for further analyses, in order to potentially: (1) accelerate novel disease gene discovery; (2) increase the molecular diagnostic yield of whole exome sequencing (WES); and (3) gain insight into the genetic mechanisms of disease. Pilot project data included 74 families, consisting mostly of parent-offspring trios. Analyses performed on a research basis employed both WES from additional family members and complementary bioinformatics approaches and protocols. RESULTS: Analysis of all possible modes of Mendelian inheritance, focusing on both single nucleotide variants (SNV) and copy number variant (CNV) alleles, yielded a likely contributory variant in 36% (27/74) of cases. If one includes candidate genes with variants identified within a single family, a potential contributory variant was identified in a total of ~51% (38/74) of cases enrolled in this pilot study. The molecular diagnosis was achieved in 30/63 trios (47.6%). Besides this, the analysis workflow yielded evidence for pathogenic variants in disease-associated genes in 4/6 singleton cases (66.6%), 1/1 multiplex family involving three affected siblings, and 3/4 (75%) quartet families. Both the analytical pipeline and the collaborative efforts between the diagnostic and research laboratories provided insights that allowed recent disease gene discoveries (PURA, TANGO2, EMC1, GNB5, ATAD3A, and MIPEP) and increased the number of novel genes, defined in this study as genes identified in more than one family (DHX30 and EBF3). CONCLUSION: An efficient genomics pipeline in which clinical sequencing in a diagnostic laboratory is followed by the detailed reanalysis of unsolved cases in a research environment, supplemented with WES data from additional family members, and subject to adjuvant bioinformatics analyses including relaxed variant filtering parameters in informatics pipelines, can enhance the molecular diagnostic yield and provide mechanistic insights into Mendelian disorders. Implementing these approaches requires collaborative clinical molecular diagnostic and research efforts.
  • Loading...
    Thumbnail Image
    Item
    Niclosamide Triggers Non-Canonical LC3 Lipidation
    (MDPI, 2019-03-15) Liu, Yajun; Luo, Xia; Shan, Hao; Fu, Yuanyuan; Gu, Qianqian; Zheng, Xueping; Dai, Qi; Xia, Fan; Zheng, Zhihua; Liu, Peiqing; Yin, Xiao-Ming; Hong, Liang; Li, Min; Pathology and Laboratory Medicine, School of Medicine
    Autophagy is a highly- evolutionarily-conserved catabolic pathway activated by various cellular stresses. Recently, non-canonical autophagy (NCA), which does not require all of the ATG proteins to form autophagosome or autophagosome-like structures, has been found in various conditions. Moreover, mounting evidence has indicated that non-canonical LC3 lipidation (NCLL) may reflect NCA. We and others have reported that niclosamide (Nic), an anti-helminthic drug approved by the Food and Drug Administration, could induce canonical autophagy via a feedback downregulation of mTOR complex 1. In this study, we found that Nic could also induce NCLL, which is independent of the ULK1 complex and Beclin 1 complex, but dependent on ubiquitin-like conjugation systems. Although bafilomycin A1 and concanamycin A, two known V-ATPase inhibitors, significantly inhibited Nic-induced NCLL, Nic-induced NCLL was demonstrated to be independent of V-ATPase. In addition, the Golgi complex and vimentin were involved in Nic-induced NCLL, which might be a platform or membrane source for Nic-induced LC3-positive structures. These results would be helpful to broaden our understanding of the working mechanisms of Nic and evaluate its pharmacological activities in diseases.
  • Loading...
    Thumbnail Image
    Item
    De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome
    (BMC, 2019-02-28) Vetrini, Francesco; McKee, Shane; Rosenfeld, Jill A.; Suri, Mohnish; Lewis, Andrea M.; Nugent, Kimberly Margaret; Roeder, Elizabeth; Littlejohn, Rebecca O.; Holder, Sue; Zhu, Wenmiao; Alaimo, Joseph T.; Graham, Brett; Harris, Jill M.; Gibson, James B.; Pastore, Matthew; McBride, Kim L.; Komara, Makanko; Al-Gazali, Lihadh; Al Shamsi, Aisha; Fanning, Elizabeth A.; Wierenga, Klaas J.; Scott, Daryl A.; Ben-Neriah, Ziva; Meiner, Vardiella; Cassuto, Hanoch; Elpeleg, Orly; Holder, J. Lloyd, Jr.; Burrage, Lindsay C.; Seaver, Laurie H.; Van Maldergem, Lionel; Mahida, Sonal; Soul, Janet S.; Marlatt, Margaret; Matyakhina, Ludmila; Vogt, Julie; Gold, June-Anne; Park, Soo-Mi; Varghese, Vinod; Lampe, Anne K.; Kumar, Ajith; Lees, Melissa; Holder-Espinasse, Muriel; McConnell, Vivienne; Bernhard, Birgitta; Blair, Ed; Harrison, Victoria; The DDD study; Muzny, Donna M.; Gibbs, Richard A.; Elsea, Sarah H.; Posey, Jennifer E.; Bi, Weimin; Lalani, Seema; Xia, Fan; Yang, Yaping; Eng, Christine M.; Lupski, James R.; Liu, Pengfei; Medical and Molecular Genetics, School of Medicine
    BACKGROUND: Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity). METHODS: Genome-wide analyses by exome sequencing (ES) and chromosomal microarray analysis (CMA) identified individuals with heterozygous, likely damaging, loss-of-function alleles in TCF20. We implemented further molecular and clinical analyses to determine the inheritance of the pathogenic variant alleles and studied the spectrum of phenotypes. RESULTS: We report 25 unique inactivating single nucleotide variants/indels (1 missense, 1 canonical splice-site variant, 18 frameshift, and 5 nonsense) and 4 deletions of TCF20. The pathogenic variants were detected in 32 patients and 4 affected parents from 31 unrelated families. Among cases with available parental samples, the variants were de novo in 20 instances and inherited from 4 symptomatic parents in 5, including in one set of monozygotic twins. Two pathogenic loss-of-function variants were recurrent in unrelated families. Patients presented with a phenotype characterized by developmental delay, intellectual disability, hypotonia, variable dysmorphic features, movement disorders, and sleep disturbances. CONCLUSIONS: TCF20 pathogenic variants are associated with a novel syndrome manifesting clinical characteristics similar to those observed in Smith-Magenis syndrome. Together with previously described cases, the clinical entity of TCF20-associated neurodevelopmental disorders (TAND) emerges from a genotype-driven perspective.
  • Loading...
    Thumbnail Image
    Item
    Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15
    (Oxford University Press, 2019-05-01) Cheng, Hanyin; Gottlieb, Leah; Marchi, Elaine; Kleyner, Robert; Bhardwaj, Puja; Rope, Alan F.; Rosenheck, Sarah; Moutton, Sébastien; Philippe, Christophe; Eyaid, Wafaa; Alkuraya, Fowzan S.; Toribio, Janet; Mena, Rafael; Prada, Carlos E.; Stessman, Holly; Bernier, Raphael; Wermuth, Marieke; Kauffmann, Birgit; Blaumeiser, Bettina; Kooy, R Frank; Baralle, Diana; Mancini, Grazia M. S.; Conway, Simon J.; Xia, Fan; Chen, Zhao; Meng, Linyan; Mihajlovic, Ljubisa; Marmorstein, Ronen; Lyon, Gholson J.; Pediatrics, School of Medicine
    N-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels of intellectual disability, delayed speech and motor milestones and autism spectrum disorder. Additionally, some subjects present with mild craniofacial dysmorphology, congenital cardiac anomalies and seizures. One of the individuals is an 11-year-old boy with a frameshift variant in exon 7 of NAA10, who presents most notably with microphthalmia, which confirms a prior finding with a single family with Lenz microphthalmia syndrome. Biochemical analyses of variants as part of the human NatA complex, as well as enzymatic analyses with and without the HYPK regulatory subunit, help to explain some of the phenotypic differences seen among the different variants.
  • Loading...
    Thumbnail Image
    Item
    Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15
    (Oxford University Press, 2020-03-27) Cheng, Hanyin; Gottlieb, Leah; Marchi, Elaine; Kleyner, Robert; Bhardwaj, Puja; Rope, Alan F.; Rosenheck, Sarah; Moutton, Sébastien; Philippe, Christophe; Eyaid, Wafaa; Alkuraya, Fowzan S.; Toribio, Janet; Mena, Rafael; Prada, Carlos E.; Stessman, Holly; Bernier, Raphael; Wermuth, Marieke; Kauffmann, Birgit; Blaumeiser, Bettina; Kooy, R. Frank; Baralle, Diana; Mancini, Grazia M. S.; Conway, Simon J.; Xia, Fan; Chen, Zhao; Meng, Linyan; Mihajlovic, Ljubisa; Marmorstein, Ronen; Lyon, Gholson J.; Medicine, School of Medicine
    In the original version of this article, Ezzat El-Akkad’s name was misspelled in the acknowledgements section; this has now been corrected. The authors apologize for this error.
  • Loading...
    Thumbnail Image
    Item
    Phenotypic expansion in DDX3X - a common cause of intellectual disability in females
    (Wiley, 2018-09-15) Wang, Xia; Posey, Jennifer E.; Rosenfeld, Jill A.; Bacino, Carlos A.; Scaglia, Fernando; Immken, LaDonna; Harris, Jill M.; Hickey, Scott E.; Mosher, Theresa M.; Slavotinek, Anne; Zhang, Jing; Beuten, Joke; Leduc, Magalie S.; He, Weimin; Vetrini, Francesco; Walkiewicz, Magdalena A.; Bi, Weimin; Xiao, Rui; Liu, Pengfei; Shao, Yunru; Gezdirici, Alper; Gulec, Elif Y.; Jiang, Yunyun; Darilek, Sandra A.; Hansen, Adam W.; Khayat, Michael M.; Pehlivan, Davut; Piard, Juliette; Muzny, Donna M.; Hanchard, Neil; Belmont, John W.; Van Maldergem, Lionel; Gibbs, Richard A.; Eldomery, Mohammad K.; Akdemir, Zeynep C.; Adesina, Adekunle M.; Chen, Shan; Lee, Yi-Chien; Lee, Brendan; Lupski, James R.; Eng, Christine M.; Xia, Fan; Yang, Yaping; Graham, Brett H.; Moretti, Paolo; Medical and Molecular Genetics, School of Medicine
    De novo variants in DDX3X account for 1-3% of unexplained intellectual disability (ID) cases and are amongst the most common causes of ID especially in females. Forty-seven patients (44 females, 3 males) have been described. We identified 31 additional individuals carrying 29 unique DDX3X variants, including 30 postnatal individuals with complex clinical presentations of developmental delay or ID, and one fetus with abnormal ultrasound findings. Rare or novel phenotypes observed include respiratory problems, congenital heart disease, skeletal muscle mitochondrial DNA depletion, and late-onset neurologic decline. Our findings expand the spectrum of DNA variants and phenotypes associated with DDX3X disorders.
  • Loading...
    Thumbnail Image
    Item
    The protease activity of human ATG4B is regulated by reversible oxidative modification
    (Taylor & Francis, 2020-10) Zheng, Xueping; Yang, Zuolong; Gu, Qianqian; Xia, Fan; Fu, Yuanyuan; Liu, Peiqing; Yin, Xiao-Ming; Li, Min; Pathology and Laboratory Medicine, School of Medicine
    Macroautophagy/autophagy plays a pivotal role in cytoplasmic material recycling and metabolic turnover, in which ATG4B functions as a "scissor" for processing pro-LC3 and lipidated LC3 to drive the autophagy progress. Mounting evidence has demonstrated the tight connection between ROS and autophagy during various pathological situations. Coincidentally, several studies have shown that ATG4B is potentially regulated by redox modification, but the underlying molecular mechanism and its relationship with autophagy is ambiguous. In this study, we verified that ATG4B activity was definitely regulated in a reversible redox manner. We also determined that Cys292 and Cys361 are essential sites of ATG4B to form reversible intramolecular disulfide bonds that respond to oxidative stress. Interestingly, we unraveled a new phenomenon that ATG4B concurrently formed disulfide-linked oligomers at Cys292 and Cys361, and that both sites underwent redox modifications thereby modulating ATG4B activity. Finally, increased autophagic flux and decreased oxidation sensitivity were observed in Cys292 and Cys361 double site-mutated cells under normal growth conditions. In conclusion, our research reveals a novel molecular mechanism that oxidative modification at Cys292 and Cys361 sites regulates ATG4B function, which modulates autophagy.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University