ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wynn, Tung"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    ATP-Binding Cassette Transporter of Clinical Significance: Sideroblastic Anemia
    (MDPI, 2024-06-14) Ogunbileje, John O.; Harris, Neil; Wynn, Tung; Kashif, Reema; Stover, Brian; Osa-Andrews, Bremansu; Pathology and Laboratory Medicine, School of Medicine
    The ATP-binding cassette (ABC) transporters are a vast group of 48 membrane proteins, some of which are of notable physiological and clinical importance. Some ABC transporters are involved in functions such as the transport of chloride ions, bilirubin, reproductive hormones, cholesterol, and iron. Consequently, genetic or physiological disruption in these functions is manifested in various disease processes like cystic fibrosis, Tangier disease, and sideroblastic anemia. Among other etiologies, primary sideroblastic anemia results from a genetic mutation in the ATP-binding cassette-7 (ABCB7), a member of the ABC transporter family. There are not many articles specifically tackling the disease processes caused by ABC transporters in detail. Some testing methodologies previously reported in the available literature for investigating sideroblastic anemia need updating. Here, we expound on the relevance of ABCB7 as a clinically important ABC transporter and a rare participant in the disease process of Sideroblastic anemia. The other genetic and secondary etiologies of sideroblastic anemia, which do not involve mutations in the ABCB7 protein, are also described. We review the pathophysiology, clinical course, symptoms, diagnosis, and treatment of sideroblastic anemia with a focus on modern technologies for laboratory testing.
  • Loading...
    Thumbnail Image
    Item
    Preclinical development of plant‐based oral immune modulatory therapy for haemophilia B
    (Wiley, 2021-10) Srinivasan, Aparajitha; Herzog, Roland W.; Khan, Imran; Sherman, Alexandra; Bertolini, Thais; Wynn, Tung; Daniell, Henry; Pediatrics, School of Medicine
    Anti‐drug antibody (ADA) formation is a major complication in treatment of the X‐linked bleeding disorder haemophilia B (deficiency in coagulation factor IX, FIX). Current clinical immune tolerance protocols are often not effective due to complications such as anaphylactic reactions against FIX. Plant‐based oral tolerance induction may address this problem, as illustrated by the recent first regulatory approval of orally delivered plant cells to treat peanut allergy. Our previous studies showed that oral delivery of plant cells expressing FIX fused to the transmucosal carrier CTB (cholera toxin subunit B) in chloroplasts suppressed ADA in animals with haemophilia B. We report here creation of the first lettuce transplastomic lines expressing a coagulation factor, in the absence of antibiotic resistance gene. Stable integration of the CTB‐FIX gene and homoplasmy (transformation of ˜10 000 copies in each cell) were maintained in both T1 and T2 generation marker‐free plants. CTB‐FIX expression in lyophilized leaves of T1 and T2 marker‐free plants was 1.0–1.5 mg/g dry weight, confirming that the marker excision did not affect antigen levels. Oral administration of CTB‐FIX to Sprague Dawley rats at 0.25, 1 or 2.5 mg/kg did not produce overt adverse effects or toxicity. The no‐observed‐adverse‐effect level (NOAEL) is at least 2.5 mg/kg for a single oral administration in rats. Oral administration of CTB‐FIX at 0.3 or 1.47 mg/kg either mixed in food or as an oral suspension to Beagle dogs did not produce any observable toxicity. These toxicology studies should facilitate filing of regulatory approval documents and evaluation in haemophilia B patients.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University