- Browse by Author
Browsing by Author "Wylie, Kristine M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Association of Antibiotics, Airway Microbiome, and Inflammation in Infants with Cystic Fibrosis(American Thoracic Society, 2017-10) Pittman, Jessica E.; Wylie, Kristine M.; Akers, Kathryn; Storch, Gregory A.; Hatch, Joseph; Quante, Jane; Frayman, Katherine B.; Clarke, Nadeene; Davis, Miriam; Stick, Stephen M.; Hall, Graham L.; Montgomery, Gregory; Ranganathan, Sarath; Davis, Stephanie D.; Ferkol, Thomas W.; Pediatrics, School of MedicineRATIONALE: The underlying defect in the cystic fibrosis (CF) airway leads to defective mucociliary clearance and impaired bacterial killing, resulting in endobronchial infection and inflammation that contributes to progressive lung disease. Little is known about the respiratory microbiota in the early CF airway and its relationship to inflammation. OBJECTIVES: To examine the bacterial microbiota and inflammatory profiles in bronchoalveolar lavage fluid and oropharyngeal secretions in infants with CF. METHODS: Infants with CF from U.S. and Australian centers were enrolled in a prospective, observational study examining the bacterial microbiota and inflammatory profiles of the respiratory tract. Bacterial diversity and density (load) were measured. Lavage samples were analyzed for inflammatory markers (interleukin 8, unbound neutrophil elastase, and absolute neutrophil count) in the epithelial lining fluid. RESULTS: Thirty-two infants (mean age, 4.7 months) underwent bronchoalveolar lavage and oropharyngeal sampling. Shannon diversity strongly correlated between upper and lower airway samples from a given subject, although community compositions differed. Microbial diversity was lower in younger subjects and in those receiving daily antistaphylococcal antibiotic prophylaxis. In lavage samples, reduced diversity correlated with lower interleukin 8 concentration and absolute neutrophil count. CONCLUSIONS: In infants with CF, reduced bacterial diversity in the upper and lower airways was strongly associated with the use of prophylactic antibiotics and younger age at the time of sampling; less diversity in the lower airway correlated with lower inflammation on bronchoalveolar lavage. Our findings suggest modification of the respiratory microbiome in infants with CF may influence airway inflammation.Item Exploration of bacterial community classes in major human habitats(Springer Nature, 2014-05-07) Zhou, Yanjiao; Mihindukulasuriya, Kathie A.; Gao, Hongyu; La Rosa, Patricio S.; Wylie, Kristine M.; Martin, John C.; Kota, Karthik; Shannon, William D.; Mitreva, Makedonka; Sodergren, Erica; Weinstock, George M.; Medical and Molecular Genetics, School of MedicineBackground: Determining bacterial abundance variation is the first step in understanding bacterial similarity between individuals. Categorization of bacterial communities into groups or community classes is the subsequent step in describing microbial distribution based on abundance patterns. Here, we present an analysis of the groupings of bacterial communities in stool, nasal, skin, vaginal and oral habitats in a healthy cohort of 236 subjects from the Human Microbiome Project. Results: We identify distinct community group patterns in the anterior nares, four skin sites, and vagina at the genus level. We also confirm three enterotypes previously identified in stools. We identify two clusters with low silhouette values in most oral sites, in which bacterial communities are more homogeneous. Subjects sharing a community class in one habitat do not necessarily share a community class in another, except in the three vaginal sites and the symmetric habitats of the left and right retroauricular creases. Demographic factors, including gender, age, and ethnicity, significantly influence community composition in several habitats. Community classes in the vagina, retroauricular crease and stool are stable over approximately 200 days. Conclusion: The community composition, association of demographic factors with community classes, and demonstration of community stability deepen our understanding of the variability and dynamics of human microbiomes. This also has significant implications for experimental designs that seek microbial correlations with clinical phenotypes.