- Browse by Author
Browsing by Author "Wu, Lingyan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Establishment of lal-/- myeloid lineage cell line that resembles myeloid-derived suppressive cells(PLoS, 2015-03-25) Ding, Xinchun; Wu, Lingyan; Yan, Cong; Du, Hong; Department of Pathology and Laboratory Medicine, IU School of MedicineMyeloid-derived suppressor cells (MDSCs) in mouse are inflammatory cells that play critical roles in promoting cancer growth and metastasis by directly stimulating cancer cell proliferation and suppressing immune surveillance. In order to facilitate characterization of biochemical and cellular mechanisms of MDSCs, it is urgent to establish an "MDSC-like" cell line. By cross breeding of immortomouse (simian virus 40 large T antigen transgenic mice) with wild type and lysosomal acid lipase (LAL) knock-out (lal-/-) mice, we have established a wild type (HD1A) and a lal-/- (HD1B) myeloid cell lines. Compared with HD1A cells, HD1B cells demonstrated many characteristics similar to lal-/- MDSCs. HD1B cells exhibited increased lysosomes around perinuclear areas, dysfunction of mitochondria skewing toward fission structure, damaged membrane potential, and increased ROS production. HD1B cells showed increased glycolytic metabolism during blockage of fatty acid metabolism to fuel the energy need. Similar to lal-/- MDSCs, the mTOR signal pathway in HD1B cells is overly activated. Rapamycin treatment of HD1B cells reduced ROS production and restored the mitochondrial membrane potential. HD1B cells showed much stronger immunosuppression on CD4+ T cell proliferation and function in vitro, and enhanced cancer cells proliferation. Knockdown of mTOR with siRNA reduced the HD1B cell ability to immunosuppress T cells and stimulate cancer cell proliferation. Therefore, the HD1B myeloid cell line is an "MDSC-like" cell line that can be used as an alternative in vitro system to study how LAL controls various myeloid cell functions.Item Stat3 Downstream Gene Product Chitinase 3-Like 1 Is a Potential Biomarker of Inflammation-induced Lung Cancer in Multiple Mouse Lung Tumor Models and Humans(Public Library of Science, 2013-04-22) Yan, Cong; Ding, Xinchun; Wu, Lingyan; Yu, Menggang; Qu, Peng; Du, Hong; Pathology and Laboratory Medicine, School of MedicineOver-activation of the signal transducers and activators of the transcription 3 (Stat3) pathway in lung alveolar type II (AT II) epithelial cells induces chronic inflammation and adenocarcinoma in the lung of CCSP-rtTA/(tetO)7-CMV-Stat3C bitransgenic mice. One of Stat3 downstream genes products, chitinase 3-like 1 (CHI3L1) protein, showed increased concentration in both bronchioalveolar lavage fluid (BALF) and blood of doxycycline-treated CCSP-rtTA/(tetO)7-CMV-Stat3C bitransgenic mice. When tested in other inflammation-induced lung cancer mouse models, the CHI3L1 protein concentration was also highly increased in BALF and blood of these models with tumors. Immunohistochemical staining showed strong staining of CHI3L1 protein around tumor areas in these mouse models. Analysis of normal objects and lung cancer patients revealed a significant elevation of CHI3L1 protein concentration in human serum samples from all categories of lung cancers. Furthermore, recombinant CHI3L protein stimulated proliferation and growth of Lewis lung cancer cells. Therefore, secretory CHI3L1 plays an important role in inflammation-induced lung cancer formation and potentially serve as a biomarker for lung cancer prediction. Based on our previous publication and this work, this is the first animal study linking overexpression of CHI3L1 to various lung tumor mouse models. These models will facilitate identification of additional biomarkers to predict and verify lung cancer under various pathogenic conditions, which normally cannot be done in humans.Item Transthyretin Stimulates Tumor Growth through Regulation of Tumor, Immune, and Endothelial Cells(American Association of Immunologists, 2019-02-01) Lee, Chih-Chun; Ding, Xinchun; Zhao, Ting; Wu, Lingyan; Perkins, Susan; Du, Hong; Yan, Cong; Pathology and Laboratory Medicine, School of MedicineEarly detection of lung cancer offers an important opportunity to decrease mortality while it is still treatable and curable. Thirteen secretory proteins that are Stat3 downstream gene products were identified as a panel of biomarkers for lung cancer detection in human sera. This panel of biomarkers potentially differentiates different types of lung cancer for classification. Among them, the transthyretin (TTR) concentration was highly increased in human serum of lung cancer patients. TTR concentration was also induced in the serum, bronchoalveolar lavage fluid, alveolar type II epithelial cells, and alveolar myeloid cells of the CCSP-rtTA/(tetO)7-Stat3C lung tumor mouse model. Recombinant TTR stimulated lung tumor cell proliferation and growth, which were mediated by activation of mitogenic and oncogenic molecules. TTR possesses cytokine functions to stimulate myeloid cell differentiation, which are known to play roles in tumor environment. Further analyses showed that TTR treatment enhanced the reactive oxygen species production in myeloid cells and enabled them to become functional myeloid-derived suppressive cells. TTR demonstrated a great influence on a wide spectrum of endothelial cell functions to control tumor and immune cell migration and infiltration. TTR-treated endothelial cells suppressed T cell proliferation. Taken together, these 13 Stat3 downstream inducible secretory protein biomarkers potentially can be used for lung cancer diagnosis, classification, and as clinical targets for lung cancer personalized treatment if their expression levels are increased in a given lung cancer patient in the blood.