- Browse by Author
Browsing by Author "Wu, Fan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Blood Purification by Non-Selective Hemoadsorption Prevents Death after Traumatic Brain Injury and Hemorrhagic Shock in Rats(Wolters Kluwer, 2018-09) McKinley, Todd O.; Lei, Zhigang; Kalbas, Yannik; White, Fletcher A.; Shi, Zhongshang; Wu, Fan; Xu, Zao C.; Rodgers, Richard B.; Anesthesia, School of MedicineBackground Patients who sustain traumatic brain injury (TBI) and concomitant hemorrhagic shock (HS) are at high risk of high-magnitude inflammation which can lead to poor outcomes and death. Blood purification by hemoadsorption (HA) offers an alternative intervention to reduce inflammation after injury. We tested the hypothesis that HA would reduce mortality in a rat model of TBI and HS. Methods Male Sprague Dawley rats were subjected to a combined injury of a controlled cortical impact (CCI) to their brain and pressure-controlled hemorrhagic shock (HS). Animals were subsequently instrumented with an extracorporeal blood circuit that passed through a cartridge for sham or experimental treatment. In experimental animals, the treatment cartridge was filled with proprietary beads (Cytosorbents; Monmouth Junction, NJ) that removed circulating molecules between 5 KDa and 60 KDa. Sham rats had equivalent circulation but no blood purification. Serial blood samples were analyzed with multiplex technology to quantify changes in a trauma-relevant panel of immunologic mediators. The primary outcome was survival to 96hr post-injury. Results HA improved survival from 47% in sham treated rats to 86% in HA treated rats. There were no treatment-related changes in histologic appearance. HA affected biomarker concentrations both during the treatment and over the ensuing four days after injury. Distinct changes in biomarker concentrations were also measured in survivor and non-survivor rats from the entire cohort of rats indicating biomarker patterns associated with survival and death after injury. Conclusions Blood purification by non-selective HA is an effective intervention to prevent death in a combined TBI/HS rat model. HA changed circulating concentrations of multiple inmmunologically active mediators during the treatment time frame and after treatment. HA has been safely implemented in human patients with sepsis and may be a treatment option after injury.Item Increased Sestrin3 Contributes to Post-ischemic Seizures in the Diabetic Condition(Frontiers Media, 2021-01-15) Shi, Zhongshan; Lei, Zhigang; Wu, Fan; Xia, Luoxing; Ruan, Yiwen; Xu, Zao C.; Anatomy and Cell Biology, School of MedicineSeizures are among the most common neurological sequelae of stroke, and diabetes notably increases the incidence of post-ischemic seizures. Recent studies have indicated that Sestrin3 (SESN3) is a regulator of a proconvulsant gene network in human epileptic hippocampus. But the association of SESN3 and post-ischemic seizures in diabetes remains unclear. The present study aimed to reveal the involvement of SESN3 in seizures following transient cerebral ischemia in diabetes. Diabetes was induced in adult male mice and rats via intraperitoneal injection of streptozotocin (STZ). Forebrain ischemia (15 min) was induced by bilateral common carotid artery occlusion, the 2-vessel occlusion (2VO) in mice and 4-vessel occlusion (4VO) in rats. Our results showed that 59% of the diabetic wild-type mice developed seizures after ischemia while no seizures were observed in non-diabetic mice. Although no apparent cell death was detected in the hippocampus of seizure mice within 24 h after the ischemic insult, the expression of SESN3 was significantly increased in seizure diabetic mice after ischemia. The post-ischemic seizure incidence significantly decreased in SESN3 knockout mice. Furthermore, all diabetic rats suffered from post-ischemic seizures and non-diabetic rats have no seizures. Electrophysiological recording showed an increased excitatory synaptic transmission and intrinsic membrane excitability in dentate granule cells of the rat hippocampus, together with decreased IA currents and Kv4.2 expression levels. The above results suggest that SESN3 up-regulation may contribute to neuronal hyperexcitability and seizure generation in diabetic animals after ischemia. Further studies are needed to explore the molecular mechanism of SESN3 in seizure generation after ischemia in diabetic conditions.