- Browse by Author
Browsing by Author "Wu, Chaodong"
Now showing 1 - 10 of 22
Results Per Page
Sort Options
Item Adipocyte inducible 6-phosphofructo-2-kinase suppresses adipose tissue inflammation and promotes macrophage anti-inflammatory activation(Elsevier, 2021) Xu, Hang; Zhu, Bilian; Li, Honggui; Jiang, Boxiong; Wang, Yina; Yin, Qiongli; Cai, James; Glaser, Shannon; Francis, Heather; Alpini, Gianfranco; Wu, Chaodong; Medicine, School of MedicineObesity-associated inflammation in white adipose tissue (WAT) is a causal factor of systemic insulin resistance. To better understand how adipocytes regulate WAT inflammation, the present study generated chimeric mice in which inducible 6-phosphofructo-2-kinase was low, normal, or high in WAT while the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3) was normal in hematopoietic cells, and analyzed changes in high-fat diet (HFD)-induced WAT inflammation and systemic insulin resistance in the mice. Indicated by proinflammatory signaling and cytokine expression, the severity of HFD-induced WAT inflammation in WT → Pfkfb3+/- mice, whose Pfkfb3 was disrupted in WAT adipocytes but not hematopoietic cells, was comparable with that in WT → WT mice, whose Pfkfb3 was normal in all cells. In contrast, the severity of HFD-induced WAT inflammation in WT → Adi-Tg mice, whose Pfkfb3 was over-expressed in WAT adipocytes but not hematopoietic cells, remained much lower than that in WT → WT mice. Additionally, HFD-induced insulin resistance was correlated with the status of WAT inflammation and comparable between WT → Pfkfb3+/- mice and WT → WT mice, but was significantly lower in WT → Adi-Tg mice than in WT → WT mice. In vitro, palmitoleate decreased macrophage phosphorylation states of Jnk p46 and Nfkb p65 and potentiated the effect of interleukin 4 on suppressing macrophage proinflammatory activation. Taken together, these results suggest that the Pfkfb3 in adipocytes functions to suppress WAT inflammation. Moreover, the role played by adipocyte Pfkfb3 is attributable to, at least in part, palmitoleate promotion of macrophage anti-inflammatory activation.Item Adipose Tissue Inflammation and Systemic Insulin Resistance in Mice with Diet-induced Obesity Is Possibly Associated with Disruption of PFKFB3 in Hematopoietic Cells(Elsevier, 2021) Zhu, Bilian; Guo, Xin; Xu, Hang; Jiang, Boxiong; Li, Honggui; Wang, Yina; Yin, Qiongli; Zhou, Tianhao; Cai, James J.; Glaser, Shannon; Meng, Fanyin; Francis, Heather; Alpini, Gianfranco; Wu, Chaodong; Medicine, School of MedicineObesity-associated inflammation in white adipose tissue (WAT) is a causal factor of systemic insulin resistance; however, precisely how immune cells regulate WAT inflammation in relation to systemic insulin resistance remains to be elucidated. The present study examined a role for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in hematopoietic cells in regulating WAT inflammation and systemic insulin sensitivity. Male C57BL/6J mice were fed a high-fat diet (HFD) or low-fat diet (LFD) for 12 weeks and examined for WAT inducible 6-phosphofructo-2-kinase (iPFK2) content, while additional HFD-fed mice were treated with rosiglitazone and examined for PFKFB3 mRNAs in WAT stromal vascular cells (SVC). Also, chimeric mice in which PFKFB3 was disrupted only in hematopoietic cells and control chimeric mice were also fed an HFD and examined for HFD-induced WAT inflammation and systemic insulin resistance. In vitro, adipocytes were co-cultured with bone marrow-derived macrophages and examined for adipocyte proinflammatory responses and insulin signaling. Compared with their respective levels in controls, WAT iPFK2 amount in HFD-fed mice and WAT SVC PFKFB3 mRNAs in rosiglitazone-treated mice were significantly increased. When the inflammatory responses were analyzed, peritoneal macrophages from PFKFB3-disrputed mice revealed increased proinflammatory activation and decreased anti-inflammatory activation compared with control macrophages. At the whole animal level, hematopoietic cell-specific PFKFB3 disruption enhanced the effects of HFD feeding on promoting WAT inflammation, impairing WAT insulin signaling, and increasing systemic insulin resistance. In vitro, adipocytes co-cultured with PFKFB3-disrupted macrophages revealed increased proinflammatory responses and decreased insulin signaling compared with adipocytes co-cultured with control macrophages. These results suggest that PFKFB3 disruption in hematopoietic cells only exacerbates HFD-induced WAT inflammation and systemic insulin resistance.Item Amelioration of Ductular Reaction by Stem Cell Derived Extracellular Vesicles in MDR2 Knockout Mice via Lethal-7 microRNA(Wiley, 2019-02-05) McDaniel, Kelly; Wu, Nan; Zhou, Tianhao; Huang, Li; Sato, Keisaku; Venter, Julie; Ceci, Ludovica; Chen, Demeng; Ramos‐Lorenzo, Sugeily; Invernizzi, Pietro; Bernuzzi, Francesca; Wu, Chaodong; Francis, Heather; Glaser, Shannon; Alpini, Gianfranco; Meng, Fanyin; Medicine, School of MedicineCholangiopathies are diseases that affect cholangiocytes, the cells lining the biliary tract. Liver stem cells (LSCs) are able to differentiate into all cells of the liver and possibly influence the surrounding liver tissue by secretion of signaling molecules. One way in which cells can interact is through secretion of extracellular vesicles (EVs), which are small membrane-bound vesicles that contain proteins, microRNAs (miRNAs), and cytokines. We evaluated the contents of liver stem cell–derived EVs (LSCEVs), compared their miRNA contents to those of EVs isolated from hepatocytes, and evaluated the downstream targets of these miRNAs. We finally evaluated the crosstalk among LSCs, cholangiocytes, and human hepatic stellate cells (HSCs). We showed that LSCEVs were able to reduce ductular reaction and biliary fibrosis in multidrug resistance protein 2 (MDR2)−/− mice. Additionally, we showed that cholangiocyte growth was reduced and HSCs were deactivated in LSCEV-treated mice. Evaluation of LSCEV contents compared with EVs derived from hepatocytes showed a large increase in the miRNA, lethal-7 (let-7). Further evaluation of let-7 in MDR2−/− mice and human primary sclerosing cholangitis samples showed reduced levels of let-7 compared with controls. In liver tissues and isolated cholangiocytes, downstream targets of let-7 (identified by ingenuity pathway analysis), Lin28a (Lin28 homolog A), Lin28b (Lin28 homolog B), IL-13 (interleukin 13), NR1H4 (nuclear receptor subfamily 1 group H member 4) and NF-κB (nuclear factor kappa B), are elevated in MDR2−/− mice, but treatment with LSCEVs reduced levels of these mediators of ductular reaction and biliary fibrosis through the inhibition of NF-κB and IL-13 signaling pathways. Evaluation of crosstalk using cholangiocyte supernatants from LSCEV-treated cells on cultured HSCs showed that HSCs had reduced levels of fibrosis and increased senescence. Conclusion: Our studies indicate that LSCEVs could be a possible treatment for cholangiopathies or could be used for target validation for future therapies.Item The Apelin–Apelin Receptor Axis Triggers Cholangiocyte Proliferation and Liver Fibrosis During Mouse Models of Cholestasis(Wiley, 2021-06) Chen, Lixian; Zhou, Tianhao; White, Tori; O'Brien, April; Chakraborty, Sanjukta; Liangpunsakul, Suthat; Yang, Zhihong; Kennedy, Lindsey; Saxena, Romil; Wu, Chaodong; Meng, Fanyin; Huang, Qiaobing; Francis, Heather; Alpini, Gianfranco; Glaser, Shannon; Medicine, School of MedicineBackground and Aims Apelin (APLN) is the endogenous ligand of its G protein–coupled receptor, apelin receptor (APJ). APLN serum levels are increased in human liver diseases. We evaluated whether the APLN–APJ axis regulates ductular reaction and liver fibrosis during cholestasis. Approach and Results We measured the expression of APLN and APJ and serum APLN levels in human primary sclerosing cholangitis (PSC) samples. Following bile duct ligation (BDL) or sham surgery, male wild-type (WT) mice were treated with ML221 (APJ antagonist) or saline for 1 week. WT and APLN−/− mice underwent BDL or sham surgery for 1 week. Multidrug resistance gene 2 knockout (Mdr2−/−) mice were treated with ML221 for 1 week. APLN levels were measured in serum and cholangiocyte supernatants, and cholangiocyte proliferation/senescence and liver inflammation, fibrosis, and angiogenesis were measured in liver tissues. The regulatory mechanisms of APLN–APJ in (1) biliary damage and liver fibrosis were examined in human intrahepatic biliary epithelial cells (HIBEpiCs) treated with APLN and (2) hepatic stellate cell (HSC) activation in APLN-treated human HSC lines (HHSteCs). APLN serum levels and biliary expression of APLN and APJ increased in PSC samples. APLN levels were higher in serum and cholangiocyte supernatants from BDL and Mdr2−/− mice. ML221 treatment or APLN−/− reduced BDL-induced and Mdr2−/−-induced cholangiocyte proliferation/senescence, liver inflammation, fibrosis, and angiogenesis. In vitro, APLN induced HIBEpiC proliferation, increased nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, reactive oxygen species (ROS) generation, and extracellular signal–regulated kinase (ERK) phosphorylation. Pretreatment of HIBEpiCs with ML221, diphenyleneiodonium chloride (Nox4 inhibitor), N-acetyl-cysteine (NAC, ROS inhibitor), or PD98059 (ERK inhibitor) reduced APLN-induced cholangiocyte proliferation. Activation of HHSteCs was induced by APLN but reduced by NAC. Conclusions The APLN–APJ axis induces cholangiocyte proliferation through Nox4/ROS/ERK-dependent signaling and HSC activation through intracellular ROS. Modulation of the APLN–APJ axis may be important for managing cholangiopathies.Item Biliary Epithelial Senescence in Liver Disease: There Will Be SASP(Frontiers Media, 2021-12-21) Meadows, Vik; Baiocchi, Leonardo; Kundu, Debjyoti; Sato, Keisaku; Fuentes, Yessenia; Wu, Chaodong; Chakraborty, Sanjukta; Glaser, Shannon; Alpini, Gianfranco; Kennedy, Lindsey; Francis, Heather; Medicine, School of MedicineCellular senescence is a pathophysiological phenomenon in which proliferative cells enter cell cycle arrest following DNA damage and other stress signals. Natural, permanent DNA damage can occur after repetitive cell division; however, acute stress or other injuries can push cells into premature senescence and eventually a senescence-associated secretory phenotype (SASP). In recent years, there has been increased evidence for the role of premature senescence in disease progression including diabetes, cardiac diseases, and end-stage liver diseases including cholestasis. Liver size and function change with aging, and presumably with increasing cellular senescence, so it is important to understand the mechanisms by which cellular senescence affects the functional nature of the liver in health and disease. As well, cells in a SASP state secrete a multitude of inflammatory and pro-fibrogenic factors that modulate the microenvironment. Cellular SASP and the associated, secreted factors have been implicated in the progression of liver diseases, such as cholestatic injury that target the biliary epithelial cells (i.e., cholangiocytes) lining the bile ducts. Indeed, cholangiocyte senescence/SASP is proposed to be a driver of disease phenotypes in a variety of liver injuries. Within this review, we will discuss the impact of cholangiocyte senescence and SASP in the pathogenesis of cholestatic disorders.Item Cholangiocarcinoma: bridging the translational gap from preclinical to clinical development and implications for future therapy(Taylor & Francis, 2021) Baiocchi, Leonardo; Sato, Keisaku; Ekser, Burcin; Kennedy, Lindsey; Francis, Heather; Ceci, Ludovica; Lenci, Ilaria; Alvaro, Domenico; Franchitto, Antonio; Onori, Paolo; Gaudio, Eugenio; Wu, Chaodong; Chakraborty, Sanjukta; Glaser, Shannon; Alpini, Gianfranco; Medicine, School of MedicineIntroduction: Cholangiocarcinoma (CCA) is a devastating liver tumor with a poor prognosis. While less than 50% of patients with CCA may benefit from surgical resection, the rest undergoes chemotherapy with disappointing results (mean survival <2 years). Alternative pharmacological treatments are needed to improve the outcomes in patients with CCA. Areas covered: In this review, we discuss CCA-related: i) experimental systems used in preclinical studies; ii) pharmacological targets identified by genetic analysis; iii) results obtained in preliminary trials in human with their pros and cons; and iv) possible targeting of endocrinal modulation. A PubMed bibliographic search matching the term “cholangiocarcinoma” with “experimental model”, “preclinical model”, “genetic target”, “targeted therapy”, “clinical trial” or “translational research” was conducted and manuscripts published between 2010 and 2020 were retrieved for reading and reviewing. Expert opinion: Several factors contribute to the translational gap between bench research and clinical practice in CCA. The tumor heterogeneity, lack of a preclinical model recapitulating the different features of CCA, and difficult patient enrollment in clinical trials are elements to consider for basic and clinical research in CCA. Establishment of international networks formed by experts in the field of CCA may improve future research and its translational findings on patients.Item Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 / Mouse Model of Primary Sclerosing Cholangitis(Cognizant Communication Corporation, 2020-11) Kyritsi, Konstantina; Francis, Heather; Zhou, Tianhao; Ceci, Ludovica; Wu, Nan; Yang, Zhihong; Meng, Fanyin; Chen, Lixian; Baiocchi, Leonardo; Kundu, Debjyoti; Kennedy, Lindsey; Liangpunsakul, Suthat; Wu, Chaodong; Glaser, Shannon; Alpini, Gianfranco; Medicine, School of MedicineBiliary senescence and hepatic fibrosis are hallmarks of cholangiopathies including primary sclerosing cholangitis (PSC). Senescent cholangiocytes display senescence-associated secretory phenotypes [SASPs, e.g., transforming growth factor-1 (TGF-1)] that further increase biliary senescence (by an autocrine loop) and trigger liver fibrosis by paracrine mechanisms. The aim of this study was to determine the effect of p16 inhibition and role of the TGF-1/microRNA (miR)-34a/sirtuin 1 (SIRT1) axis in biliary damage and liver fibrosis in the Mdr2/ mouse model of PSC. We treated (i) in vivo male wild-type (WT) and Mdr2/ mice with p16 Vivo-Morpholino or controls before measuring biliary mass [intrahepatic bile duct mass (IBDM)] and senescence, biliary SASP levels, and liver fibrosis, and (ii) in vitro intrahepatic murine cholangiocyte lines (IMCLs) with small interfering RNA against p16 before measuring the mRNA expression of proliferation, senescence, and fibrosis markers. p16 and miR-34a increased but SIRT1 decreased in Mdr2/ mice and PSC human liver samples compared to controls. p16 immunoreactivity and biliary senescence and SASP levels increased in Mdr2/ mice but decreased in Mdr2/ mice treated with p16 Vivo-Morpholino. The increase in IBDM and hepatic fibrosis (observed in Mdr2/ mice) returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. TGF-1 immunoreactivity and biliary SASPs levels were higher in Mdr2/ compared to those of WT mice but returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. The expression of fibrosis/senescence markers decreased in cholangiocytes from Mdr2/ mice treated with p16 Vivo-Morpholino (compared to Mdr2/ mice) and in IMCLs (after p16 silencing) compared to controls. Modulation of the TGF-1/miR-34a/SIRT1 axis may be important in the management of PSC phenotypes.Item Dysbiosis in gastrointestinal pathophysiology: Role of the gut microbiome in Gulf War Illness(Wiley, 2023) Slevin, Elise; Koyama, Sachiko; Harrison, Kelly; Wan, Ying; Klaunig, James E.; Wu, Chaodong; Shetty, Ashok K.; Meng, Fanyin; Medicine, School of MedicineGulf War Illness (GWI) has been reported in 25%-35% of veterans returned from the Gulf war. Symptoms of GWI are varied and include both neurological and gastrointestinal symptoms as well as chronic fatigue. Development of GWI has been associated with chemical exposure particularly with exposure to pyridostigmine bromide (PB) and permethrin. Recent studies have found that the pathology of GWI is connected to changes in the gut microbiota, that is the gut dysbiosis. In studies using animal models, the exposure to PB and permethrin resulted in similar changes in the gut microbiome as these found in GW veterans with GWI. Studies using animal models have also shown that phytochemicals like curcumin are beneficial in reducing the symptoms and that the extracellular vesicles (EV) released from gut bacteria and from the intestinal epithelium can both promote diseases and suppress diseases through the intercellular communication mechanisms. The intestinal epithelium cells produce EVs and these EVs of intestinal epithelium origin are found to suppress inflammatory bowel disease severity, suggesting the benefits of utilizing EV in treatments. On the contrary, EV from the plasma of septic mice enhanced the level of proinflammatory cytokines in vitro and neutrophils and macrophages in vivo, suggesting differences in the EV depending on the types of cells they were originated and/or influences of environmental changes. These studies suggest that targeting the EV that specifically have positive influences may become a new therapeutic strategy in the treatment of veterans with GWI.Item Endothelial dysfunction in pathological processes of chronic liver disease during aging(Wiley, 2022) Wan, Ying; Li, Xuedong; Slevin, Elise; Harrison, Kelly; Li, Tian; Zhang, Yudian; Klaunig, James E.; Wu, Chaodong; Shetty, Ashok K.; Dong, X. Charlie; Meng, Fanyin; Medicine, School of MedicineAging is associated with gradual changes in liver structure and physiological/pathological functions in hepatic cells including hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells (HSCs), and liver sinusoidal endothelial cells (LSECs). LSECs are specialized hepatic endothelial cells that regulate liver homeostasis. These cells actively impact the hepatic microenvironment as they have fenestrations and a thin morphology to allow substance exchange between circulating blood and the liver tissue. As aging occurs, LSECs have a reduction in both the number and size of fenestrations, which is referred to as pseudocapillarization. This along with the aging of the liver leads to increased oxidative stress, decreased availability of nitric oxide, decreased hepatic blood flow, and increased inflammatory cytokines in LSECs. Vascular aging can also lead to hepatic hypoxia, HSC activation, and liver fibrosis. In this review, we described the basic structure of LSECs, and the effect of LSECs on hepatic inflammation and fibrosis during aging process. We briefly summarized the changes of hepatic microcirculation during liver inflammation, the effect of aging on the clearance function of LSECs, the interactions between LSECs and immunity, hepatocytes or other hepatic nonparenchymal cells, and the therapeutic intervention of liver diseases by targeting LSECs and vascular system. Since LSECs play an important role in the development of liver fibrosis and the changes of LSEC phenotype occur in the early stage of liver fibrosis, the study of LSECs in the fibrotic liver is valuable for the detection of early liver fibrosis and the early intervention of fibrotic response.Item FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2-/- Mouse Model of Primary Sclerosing Cholangitis(Wolters Kluwer, 2022) O’Brien, April; Zhou, Tianhao; White, Tori; Medford, Abigail; Chen, Lixian; Kyritsi, Konstantina; Wu, Nan; Childs, Jonathan; Stiles, Danaleigh; Ceci, Ludovica; Chakraborty, Sanjukta; Ekser, Burcin; Baiocchi, Leonardo; Carpino, Guido; Gaudio, Eugenio; Wu, Chaodong; Kennedy, Lindsey; Francis, Heather; Alpini, Gianfranco; Glaser, Shannon; Medicine, School of MedicineFibroblast growth factor 1 (FGF1) belongs to a family of growth factors involved in cellular growth and division. MicroRNA 16 (miR-16) is a regulator of gene expression, which is dysregulated during liver injury and insult. However, the role of FGF1 in the progression of biliary proliferation, senescence, fibrosis, inflammation, angiogenesis, and its potential interaction with miR-16, are unknown. In vivo studies were performed in male bile duct-ligated (BDL, 12-week-old) mice, multidrug resistance 2 knockout (Mdr2-/-) mice (10-week-old), and their corresponding controls, treated with recombinant human FGF1 (rhFGF1), fibroblast growth factor receptor (FGFR) antagonist (AZD4547), or anti-FGF1 monoclonal antibody (mAb). In vitro, the human cholangiocyte cell line (H69) and human hepatic stellate cells (HSCs) were used to determine the expression of proliferation, fibrosis, angiogenesis, and inflammatory genes following rhFGF1 treatment. PSC patient and control livers were used to evaluate FGF1 and miR-16 expression. Intrahepatic bile duct mass (IBDM), along with hepatic fibrosis and inflammation, increased in BDL mice treated with rhFGF1, with a corresponding decrease in miR-16, while treatment with AZD4547 or anti-FGF1 mAb decreased hepatic fibrosis, IBDM, and inflammation in BDL and Mdr2-/- mice. In vitro, H69 and HSCs treated with rhFGF1 had increased expression of proliferation, fibrosis, and inflammatory markers. PSC samples also showed increased FGF1 and FGFRs with corresponding decreases in miR-16 compared with healthy controls. Conclusion: Our study demonstrates that suppression of FGF1 and miR-16 signaling decreases the presence of hepatic fibrosis, biliary proliferation, inflammation, senescence, and angiogenesis. Targeting the FGF1 and miR-16 axis may provide therapeutic options in treating cholangiopathies such as PSC.
- «
- 1 (current)
- 2
- 3
- »