- Browse by Author
Browsing by Author "Wong, Bonnie"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Association Between Age and Cognitive Severity in Early‐Onset AD: Extension of preliminary findings in the Longitudinal Early‐Onset Alzheimer’s Disease Study (LEADS)(Wiley, 2025-01-03) Hammers, Dustin B.; Eloyan, Ani; Taurone, Alexander; Thangarajah, Maryanne; Kirby, Kala; Wong, Bonnie; Dage, Jeffrey L.; Nudelman, Kelly N.; Carrillo, Maria C.; Rabinovici, Gil D.; Dickerson, Bradford C.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineBackground: Widespread cognitive impairments have previously been documented in Early‐Onset Alzheimer’s Disease (EOAD) relative to cognitively normal (CN) same‐aged peers or those with cognitive impairment without amyloid pathology (Early‐Onset non‐Alzheimer’s Disease; EOnonAD; Hammers et al., 2023). Prior preliminary work has similarly observed worse cognitive performance being associated with earlier ages in EOAD participants enrolled in the Longitudinal Early‐Onset Alzheimer’s Disease Study (LEADS; Apostolova et al., 2019). It is unclear, however, if these age effects are seen across early‐onset conditions, and whether cognitive discrepancies among diagnostic groups are uniform across the age spectrum. The objective of the current study is to more‐extensively examine the impact of age‐at‐baseline on cognition within LEADS, with emphasis placed on the influence of diagnostic group on these associations. Method: Expanded cross‐sectional baseline cognitive data from 573 participants (CN, n = 97; EOAD, n = 364; EOnonAD, n = 112) enrolled in the LEADS study (aged 40‐64) were analyzed. Multiple linear regression analyses were conducted to investigate associations between age‐at‐baseline and cognition for each diagnostic group – and their interaction among diagnoses – controlling for gender, education, APOE ε4 status, and disease severity. Result: See Table 1 for demographic characteristics of our sample. Linear regression showed a significant interaction effect for the cognitive domain of Executive Functioning (p = .002). Specifically, while the EOAD group displayed a positive relationship between age‐at‐baseline and Executive Functioning performance (β = 0.08, p = .02; Figure 1), the CN group displayed a negative relationship (β = ‐0.04, p = .008) and the EOnonAD group displayed no relationship (β = ‐0.01, p = .50). A similar main‐effect for age was observed for the EOAD group when examining Visuospatial Skills (β = 0.12, p = .04), however no other age effects were evident across other diagnostic groups or cognitive domains (Episodic Memory, Language, or Speed/Attention; Table 2). Conclusion: Building off preliminary work, our results suggest that executive functioning may be disproportionately impacted earlier in the disease course in participants with EOAD relative to other diagnostic groups. This finding appears to be unique to executive functioning, as it was absent in other cognitive domains and remained after accounting for disease severity. This highlights the need for further investigation into executive dysfunction early in the course of EOAD.Item Brain volumetric deficits in MAPT mutation carriers: a multisite study(Wiley, 2021) Chu, Stephanie A.; Flagan, Taru M.; Staffaroni, Adam M.; Jiskoot, Lize C.; Deng, Jersey; Spina, Salvatore; Zhang, Liwen; Sturm, Virginia E.; Yokoyama, Jennifer S.; Seeley, William W.; Papma, Janne M.; Geschwind, Dan H.; Rosen, Howard J.; Boeve, Bradley F.; Boxer, Adam L.; Heuer, Hilary W.; Forsberg, Leah K.; Brushaber, Danielle E.; Grossman, Murray; Coppola, Giovanni; Dickerson, Bradford C.; Bordelon, Yvette M.; Faber, Kelley; Feldman, Howard H.; Fields, Julie A.; Fong, Jamie C.; Foroud, Tatiana; Gavrilova, Ralitza H.; Ghoshal, Nupur; Graff-Radford, Neill R.; Hsiung, Ging-Yuek Robin; Huey, Edward D.; Irwin, David J.; Kantarci, Kejal; Kaufer, Daniel I.; Karydas, Anna M.; Knopman, David S.; Kornak, John; Kramer, Joel H.; Kukull, Walter A.; Lapid, Maria I.; Litvan, Irene; Mackenzie, Ian R. A.; Mendez, Mario F.; Miller, Bruce L.; Onyike, Chiadi U.; Pantelyat, Alexander Y.; Rademakers, Rosa; Ramos, Eliana Marisa; Roberson, Erik D.; Tartaglia, Maria Carmela; Tatton, Nadine A.; Toga, Arthur W.; Vetor, Ashley; Weintraub, Sandra; Wong, Bonnie; Wszolek, Zbigniew K.; ARTFL/LEFFTDS Consortium; Van Swieten, John C.; Lee, Suzee E.; Medical and Molecular Genetics, School of MedicineObjective: MAPT mutations typically cause behavioral variant frontotemporal dementia with or without parkinsonism. Previous studies have shown that symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies have shown mixed results as to whether presymptomatic carriers have low gray matter volumes. To elucidate whether presymptomatic carriers have lower structural brain volumes within regions atrophied during the symptomatic phase, we studied a large cohort of MAPT mutation carriers using a voxelwise approach. Methods: We studied 22 symptomatic carriers (age 54.7 ± 9.1, 13 female) and 43 presymptomatic carriers (age 39.2 ± 10.4, 21 female). Symptomatic carriers' clinical syndromes included: behavioral variant frontotemporal dementia (18), an amnestic dementia syndrome (2), Parkinson's disease (1), and mild cognitive impairment (1). We performed voxel-based morphometry on T1 images and assessed brain volumetrics by clinical subgroup, age, and mutation subtype. Results: Symptomatic carriers showed gray matter atrophy in bilateral frontotemporal cortex, insula, and striatum, and white matter atrophy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of presymptomatic carriers had low gray matter volumes in bilateral hippocampus, amygdala, and lateral temporal cortex. Within these regions, low gray matter volumes emerged in a subset of presymptomatic carriers as early as their thirties. Low white matter volumes arose infrequently among presymptomatic carriers. Interpretation: A subset of presymptomatic MAPT mutation carriers showed low volumes in mesial temporal lobe, the region ubiquitously atrophied in all symptomatic carriers. With each decade of age, an increasing percentage of presymptomatic carriers showed low mesial temporal volume, suggestive of early neurodegeneration.Item Effects of APOE genotype on cortical atrophy in early onset Alzheimer’s disease(Wiley, 2025-01-09) Chan, Diane; Brickhouse, Michael; Zaitsev, Alexander; Wong, Bonnie; Hammers, Dustin B.; Dage, Jeffrey L.; Foroud, Tatiana M.; Eloyan, Ani; Nudelman, Kelly N.; Nemes, Sára; Carrillo, Maria C.; Rabinovici, Gil D.; Apostolova, Liana G.; Dickerson, Bradford C.; Touroutoglou, Alexandra; LEADS Consortium; Medical and Molecular Genetics, School of MedicineBackground: APOE‐ɛ4 is a major risk factor for Alzheimer’s disease (AD); its effects have been examined in late‐onset AD (LOAD) but less so in early‐onset AD (EOAD). In LOAD, APOE genotype has strong effects on episodic memory and medial temporal lobe (MTL) atrophy (Wolk & Dickerson, 2010). However, EOAD often presents with more cognitive impairments in executive function, language, and visuospatial abilities than memory. These differences reflect more prominent atrophy in posterior lateral temporal and inferior parietal cortex that mainly constitute the EOAD‐signature of atrophy. Based on the cognitive and neuroanatomical profile of EOAD, we hypothesized that EOAD ɛ4 carriers will have relatively more atrophy in MTL regions subserving episodic memory, whereas non carriers would express more atrophy in cortical regions of the EOAD‐signature involved in executive function, language, and visuospatial abilities including inferior parietal and posterior temporal regions. We also expected worse performance on episodic memory tests in ɛ4 carriers with EOAD. Methods: We examined the effects of APOE genotype on cortical atrophy and episodic memory of 144 ɛ4 carriers and 117 ɛ4 non‐carriers with EOAD from the Longitudinal Early‐Onset Alzheimer’s Disease Study (LEADS). Between‐group comparisons using independent T‐tests were made for morphometric measures of cortical atrophy in MTL and hippocampus localized in LOAD as well as in cortical regions within our newly developed EOAD‐Signature tool (Touroutoglou et al., 2023). ANCOVA with Bonferonni’s correction was used to evaluate for effects of age on significant differences between groups. Results: As predicted, ɛ4 carriers with EOAD had more atrophy in the MTL and bilateral hippocampi, whereas non‐carriers had more atrophy in regions of the EOAD‐signature including bilateral caudal temporal, parietal lobule, middle frontal gyrus, mid temporal, posterior cingulate cortex, precuneus, superior frontal gyrus, superior parietal lobule. Post hoc vertex wise cortical maps further confirmed the specificity of the results. In addition, ɛ4 carriers had worse performance on episodic memory testing (AVLT delayed recall). These results were not explained by a difference in age between the groups. Conclusions: These results are consistent with prior work (Nemes et al. 2023) and support the hypothesis that the ɛ4 genotype modulates distinct neuroanatomic phenotypes of AD in EOAD patients.Item Learning slopes in early-onset Alzheimer's disease(Wiley, 2023) Hammers, Dustin B.; Nemes, Sára; Diedrich, Taylor; Eloyan, Ani; Kirby, Kala; Aisen, Paul; Kramer, Joel; Nudelman, Kelly; Foroud, Tatiana; Rumbaugh, Malia; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Steve; Sha, Sharon J.; Turner, Raymond Scott; Weintraub, Sandra; Wingo, Thomas S.; Wolk, David A.; Wong, Bonnie; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineObjective: Investigation of learning slopes in early-onset dementias has been limited. The current study aimed to highlight the sensitivity of learning slopes to discriminate disease severity in cognitively normal participants and those diagnosed with early-onset dementia with and without β-amyloid positivity. METHOD: Data from 310 participants in the Longitudinal Early-Onset Alzheimer's Disease Study (aged 41 to 65) were used to calculate learning slope metrics. Learning slopes among diagnostic groups were compared, and the relationships of slopes with standard memory measures were determined. RESULTS: Worse learning slopes were associated with more severe disease states, even after controlling for demographics, total learning, and cognitive severity. A particular metric-the learning ratio (LR)-outperformed other learning slope calculations across analyses. CONCLUSIONS: Learning slopes appear to be sensitive to early-onset dementias, even when controlling for the effect of total learning and cognitive severity. The LR may be the learning measure of choice for such analyses. Highlights: Learning is impaired in amyloid-positive EOAD, beyond cognitive severity scores alone. Amyloid-positive EOAD participants perform worse on learning slopes than amyloid-negative participants. Learning ratio appears to be the learning metric of choice for EOAD participants.Item Longitudinal cognitive trajectories in sporadic early‐onset Alzheimer’s Disease: Findings from LEADS(Wiley, 2025-01-03) Hammers, Dustin B.; Eloyan, Ani; Thangarajah, Maryanne; Taurone, Alexander; Wong, Bonnie; Dage, Jeffrey L.; Nudelman, Kelly N.; Carrillo, Maria C.; Rabinovici, Gil D.; Dickerson, Bradford C.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineBackground: Early Onset Alzheimer’s Disease (EOAD) is a rare condition that manifests prior to the age of 65, and affects approximately 5% of patients with Alzheimer’s disease. The Longitudinal Early‐Onset Alzheimer’s Disease Study (LEADS) is the largest prospectively‐evaluated cohort of participants with sporadic EOAD in the United States, initiated to better understand the features of this condition. The current analyses sought to examine longitudinal cognitive trajectories of patients with EOAD over time. Method: Data from 100 participants with amyloid‐positive EOAD, 30 participants with amyloid‐negative cognitive impairment (EOnonAD), and 65 cognitively normal age‐matched participants were compared. All had at least three study visits. Cognitive trajectories across a comprehensive cognitive battery across 24‐56 months were examined using mixed‐effects modeling, including the years of onset x diagnostic group interaction controlling for years since onset, education, sex, and the random effect of each participant. Result: Across all measures, clinical groups generally displayed declines over time, with performances for the EOAD group tending to approach the lower limit of performance ranges (Figure 1). Relatedly, significantly greater slopes of decline were seen over time for the EOAD group than the CN group across all cognitive domains evaluated (ps<.001; Table 1). When comparing between clinical groups, greater declines were also evident for the EOAD group relative to the EOnonAD group for a screener of global cognition, and for specific measures of attention, verbal fluency, processing speed, language, and delayed story recall (ps .001 to .049; Table 2). No differences in trajectory were observed between clinical groups for unstructured verbal memory, visual memory, or visuospatial skills (ps>.05; Tables 1 and 2). Conclusion: In addition to worse cognition at baseline, sporadic EOAD participants displayed pronounced declines in cognition over 24‐56 months across all domains evaluated. Relative to the EOnonAD group, cognitive trajectories appear to be worse predominantly for executive and attentional processes, with variability across episodic memory tasks. This suggests that EOAD pathology is not solely directed at memory functioning. Future research will focus on comparing cognitive trajectories of EOAD and late‐onset AD, in an effort to understand similarities and differences in the types and rates of cognitive trajectories.Item Recognition memory and divergent cognitive profiles in prodromal genetic frontotemporal dementia(Elsevier, 2021) Barker, Megan S.; Manoochehri, Masood; Rizer, Sandra J.; Appleby, Brian S.; Brushaber, Danielle; Dev, Sheena I.; Devick, Katrina L.; Dickerson, Bradford C.; Fields, Julie A.; Foroud, Tatiana M.; Forsberg, Leah K.; Galasko, Douglas R.; Ghoshal, Nupur; Graff-Radford, Neill R.; Grossman, Murray; Heuer, Hilary W.; Hsiung, Ging-Yuek; Kornak, John; Litvan, Irene; Mackenzie, Ian R.; Mendez, Mario F.; Pascual, Belen; Rankin, Katherine P.; Rascovsky, Katya; Staffaroni, Adam M.; Tartaglia, Maria Carmela; Weintraub, Sandra; Wong, Bonnie; Boeve, Bradley F.; Boxer, Adam L.; Rosen, Howard J.; Goldman, Jill; Huey, Edward D.; Cosentino, Stephanie; ALLFTD consortium; Medical and Molecular Genetics, School of MedicineAlthough executive dysfunction is the characteristic cognitive marker of behavioral variant frontotemporal dementia (bvFTD), episodic memory deficits are relatively common, and may be present even during the prodromal disease phase. In a cohort of mutation carriers with mild behavioral and/or cognitive symptoms consistent with prodromal bvFTD, we aimed to investigate patterns of performance on an abbreviated list learning task, with a particular focus on recognition memory. We further aimed to characterize the cognitive prodromes associated with the three major genetic causes of frontotemporal dementia, as emerging evidence suggests there may be subtle differences in cognitive profiles among carriers of different genetic mutations. Participants included 57 carriers of a pathogenic mutation in microtubule-associated protein tau (MAPT, N = 23), or progranulin (GRN, N = 15), or a or a hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72, N = 19), with mild cognitive and/or behavioral symptoms consistent with prodromal bvFTD. Familial non-carriers were included as controls (N = 143). All participants completed a comprehensive neuropsychological examination, including an abbreviated list learning test assessing episodic memory recall and recognition. MAPT mutation carriers performed worse than non-carriers in terms of list recall, and had difficulty discriminating targets from distractors on the recognition memory task, primarily due to the endorsement of distractors as targets. MAPT mutation carriers also showed nonverbal episodic memory and semantic memory dysfunction (object naming). GRN mutation carriers were variable in performance and overall the most dysexecutive. Slowed psychomotor speed was evident in C9orf72 repeat expansion carriers. Identifying the earliest cognitive indicators of bvFTD is of critical clinical and research importance. List learning may be a sensitive cognitive marker for incipient dementia in MAPT and potentially a subset of GRN carriers. Our results highlight that distinct cognitive profiles may be evident in carriers of the three disease-causing genes during the prodromal disease stage.Item Temporal order of clinical and biomarker changes in familial frontotemporal dementia(Springer Nature, 2022) Staffaroni, Adam M.; Quintana, Melanie; Wendelberger, Barbara; Heuer, Hilary W.; Russell, Lucy L.; Cobigo, Yann; Wolf, Amy; Goh, Sheng-Yang Matt; Petrucelli, Leonard; Gendron, Tania F.; Heller, Carolin; Clark, Annie L.; Taylor, Jack Carson; Wise, Amy; Ong, Elise; Forsberg, Leah; Brushaber, Danielle; Rojas, Julio C.; VandeVrede, Lawren; Ljubenkov, Peter; Kramer, Joel; Casaletto, Kaitlin B.; Appleby, Brian; Bordelon, Yvette; Botha, Hugo; Dickerson, Bradford C.; Domoto-Reilly, Kimiko; Fields, Julie A.; Foroud, Tatiana; Gavrilova, Ralitza; Geschwind, Daniel; Ghoshal, Nupur; Goldman, Jill; Graff-Radford, Jonathon; Graff-Radford, Neill; Grossman, Murray; Hall, Matthew G. H.; Hsiung, Ging-Yuek; Huey, Edward D.; Irwin, David; Jones, David T.; Kantarci, Kejal; Kaufer, Daniel; Knopman, David; Kremers, Walter; Lago, Argentina Lario; Lapid, Maria I.; Litvan, Irene; Lucente, Diane; Mackenzie, Ian R.; Mendez, Mario F.; Mester, Carly; Miller, Bruce L.; Onyike, Chiadi U.; Rademakers, Rosa; Ramanan, Vijay K.; Ramos, Eliana Marisa; Rao, Meghana; Rascovsky, Katya; Rankin, Katherine P.; Roberson, Erik D.; Savica, Rodolfo; Tartaglia, M. Carmela; Weintraub, Sandra; Wong, Bonnie; Cash, David M.; Bouzigues, Arabella; Swift, Imogen J.; Peakman, Georgia; Bocchetta, Martina; Todd, Emily G.; Convery, Rhian S.; Rowe, James B.; Borroni, Barbara; Galimberti, Daniela; Tiraboschi, Pietro; Masellis, Mario; Finger, Elizabeth; van Swieten, John C.; Seelaar, Harro; Jiskoot, Lize C.; Sorbi, Sandro; Butler, Chris R.; Graff, Caroline; Gerhard, Alexander; Langheinrich, Tobias; Laforce, Robert; Sanchez-Valle, Raquel; de Mendonça, Alexandre; Moreno, Fermin; Synofzik, Matthis; Vandenberghe, Rik; Ducharme, Simon; Le Ber, Isabelle; Levin, Johannes; Danek, Adrian; Otto, Markus; Pasquier, Florence; Santana, Isabel; Kornak, John; Boeve, Bradley F.; Rosen, Howard J.; Rohrer, Jonathan D.; Boxer, Adam L.; Frontotemporal Dementia Prevention Initiative (FPI) Investigators; Medicine, School of MedicineUnlike familial Alzheimer’s disease, we have been unable to accurately predict symptom onset in presymptomatic familial frontotemporal dementia (f-FTD) mutation carriers, which is a major hurdle to designing disease prevention trials. We developed multimodal models for f-FTD disease progression and estimated clinical trial sample sizes in C9orf72, GRN, and MAPT mutation carriers. Models included longitudinal clinical and neuropsychological scores, regional brain volumes, and plasma neurofilament light chain (NfL) in 796 carriers and 412 non-carrier controls. We found that the temporal ordering of clinical and biomarker progression differed by genotype. In prevention-trial simulations employing model-based patient selection, atrophy and NfL were the best endpoints, whereas clinical measures were potential endpoints in early symptomatic trials. F-FTD prevention trials are feasible but will likely require global recruitment efforts. These disease progression models will facilitate the planning of f-FTD clinical trials, including the selection of optimal endpoints and enrollment criteria to maximize power to detect treatment effects.