- Browse by Author
Browsing by Author "Wong, Ariel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Precision and Accuracy Assessment of Cephalometric Analyses Performed by Deep Learning Artificial Intelligence with and without Human Augmentation(MDPI, 2023-06-08) Panesar, Sumer; Zhao , Alyssa; Hollensbe, Eric; Wong, Ariel; Bhamidipalli, Surya Sruthi; Eckert, George; Dutra, Vinicius; Turkkahraman, Hakan; Orthodontics and Oral Facial Genetics, School of DentistryThe aim was to assess the precision and accuracy of cephalometric analyses performed by artificial intelligence (AI) with and without human augmentation. Four dental professionals with varying experience levels identified 31 landmarks on 30 cephalometric radiographs twice. These landmarks were re-identified by all examiners with the aid of AI. Precision and accuracy were assessed by using intraclass correlation coefficients (ICCs) and mean absolute errors (MAEs). AI revealed the highest precision, with a mean ICC of 0.97, while the dental student had the lowest (mean ICC: 0.77). The AI/human augmentation method significantly improved the precision of the orthodontist, resident, dentist, and dental student by 3.26%, 2.17%, 19.75%, and 23.38%, respectively. The orthodontist demonstrated the highest accuracy with an MAE of 1.57 mm/°. The AI/human augmentation method improved the accuracy of the orthodontist, resident, dentist, and dental student by 12.74%, 19.10%, 35.69%, and 33.96%, respectively. AI demonstrated excellent precision and good accuracy in automated cephalometric analysis. The precision and accuracy of the examiners with the aid of AI improved by 10.47% and 27.27%, respectively. The AI/human augmentation method significantly improved the precision and accuracy of less experienced dental professionals to the level of an experienced orthodontist.Item Prediction of Pubertal Mandibular Growth in Males with Class II Malocclusion by Utilizing Machine Learning(MDPI, 2023-08-21) Zakhar, Grant; Hazime, Samir; Eckert, George; Wong, Ariel; Badirli, Sarkhan; Turkkahraman, Hakan; Orthodontics and Oral Facial Genetics, School of DentistryThe goal of this study was to create a novel machine learning (ML) model that can predict the magnitude and direction of pubertal mandibular growth in males with Class II malocclusion. Lateral cephalometric radiographs of 123 males at three time points (T1: 12; T2: 14; T3: 16 years old) were collected from an online database of longitudinal growth studies. Each radiograph was traced, and seven different ML models were trained using 38 data points obtained from 92 subjects. Thirty-one subjects were used as the test group to predict the post-pubertal mandibular length and y-axis, using input data from T1 and T2 combined (2 year prediction), and T1 alone (4 year prediction). Mean absolute errors (MAEs) were used to evaluate the accuracy of each model. For all ML methods tested using the 2 year prediction, the MAEs for post-pubertal mandibular length ranged from 2.11–6.07 mm to 0.85–2.74° for the y-axis. For all ML methods tested with 4 year prediction, the MAEs for post-pubertal mandibular length ranged from 2.32–5.28 mm to 1.25–1.72° for the y-axis. Besides its initial length, the most predictive factors for mandibular length were found to be chronological age, upper and lower face heights, upper and lower incisor positions, and inclinations. For the y-axis, the most predictive factors were found to be y-axis at earlier time points, SN-MP, SN-Pog, SNB, and SNA. Although the potential of ML techniques to accurately forecast future mandibular growth in Class II cases is promising, a requirement for more substantial sample sizes exists to further enhance the precision of these predictions.