- Browse by Author
Browsing by Author "Witt, Thomas C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cortex – basal ganglia synchronization in Parkinson’s disease(Office of the Vice Chancellor for Research, 2014-04-11) Zauber, S. Elizabeth; Ahn, Sungwoo; Worth, Robert M.; Witt, Thomas C.; Rubchinsky, Leonid L.Increased synchrony in the beta band in cortico-basal ganglia circuits is well described in patients with PD. Less is known, however, about how these abnormal firing patterns are correlated across these brain regions. In this study we investigated how this intra-operative data recorded from STN correlates with scalp recorded EEG. Intraoperative single unit recordings and LFPs were obtained from STN and scalp EEG recordings were collected from four electrodes positioned over prefrontal and motor areas. We computed the STN spike-LFP (Local Filed Potential) phase synchrony over short temporal windows as it fluctuates in time. We also computed the EEG phase synchrony index time series for all 6 pairs of EEG electrodes. Next we explored cross-correlation between the two synchrony level time-series of the spike-LFP vs. EEG pairs. EEG synchrony was found to be correlated with spike-LFP synchrony. Correlation between surface EEG and STN was strongest for ipsilateral EEG and STN recordings. Spike-LFP synchronization is believed to characterize the input-output characteristics of STN dynamics and to be strongly relevant to the expression of motor symptoms. Our results indicate that non-invasive and relatively simple EEG recordings retain some information about synchronous dynamics in the subcortical regions, which can be access only in an invasive manner during functional neurosurgical procedures.Item Susceptibility-Weighted MRI Approximates Intraoperative Microelectrode Recording During Deep Brain Stimulation of the Subthalamic Nucleus for Parkinson's Disease(Elsevier, 2024-01) Budnick, Hailey C.; Schneider, Dylan; Zauber, S. Elizabeth; Witt, Thomas C.; Gupta, Kunal; Neurological Surgery, School of MedicineBackground Deep brain stimulation of the subthalamic nucleus (STN-DBS) for Parkinson's disease can be performed with intraoperative neurophysiological and radiographic guidance. Conventional T2-weighted magnetic resonance imaging sequences, however, often fail to provide definitive borders of the STN. Novel magnetic resonance imaging sequences, such as susceptibility-weighted imaging (SWI), might better localize the STN borders and facilitate radiographic targeting. We compared the radiographic location of the dorsal and ventral borders of the STN using SWI with intraoperative microelectrode recording (MER) during awake STN-DBS for Parkinson's disease. Methods Thirteen consecutive patients who underwent placement of 24 STN-DBS leads for Parkinson's disease were analyzed retrospectively. Preoperative targeting was performed with SWI, and MER data were obtained from intraoperative electrophysiology records. The boundaries of the STN on SWI were identified by a blinded investigator. Results The final electrode position differed significantly from the planned coordinates in depth but not in length or width, indicating that MER guided the final electrode depth. When we compared the boundaries of the STN by MER and SWI, SWI accurately predicted the entry into the STN but underestimated the length and ventral boundary of the STN by 1.2 mm. This extent of error approximates the span of a DBS contact and could affect the placement of directional contacts within the STN. Conclusions MER might continue to have a role in STN-DBS. This could potentially be mitigated by further refinement of imaging protocols to better image the ventral boundary of the STN.