- Browse by Author
Browsing by Author "Windsor, L. Jack"
Now showing 1 - 10 of 42
Results Per Page
Sort Options
Item Antibacterial Activities of Cannabidiol Against Two Major Oral Pathogens(2024-05) Azabi, Asma A.; Windsor, L. Jack; Gregory, Richard L.; Platt, Jeffrey A.; Duarte, Simone; Goodpaster, JohnDespite advances in oral health research, biofilm-mediated oral diseases continue to pose a health challenge. Preventive measures against biofilm-mediated disease aim to inhibit pathogenic biofilm formation on tooth surfaces. Cannabidiol (CBD), a Cannabis sativa L. L. extract, has shown antibacterial properties against various bacterial species, especially gram-positive cocci. This dissertation aimed to evaluate the antibacterial efficacy of CBD against Streptococcus mutans and Porphyromonas gingivalis bacterial growth and virulence factors. The effects of CBD on the planktonic, biofilm, and total growth of S. mutans with or without nicotine and P. gingivalis, were evaluated. The minimal inhibitory concentration (MIC), minimal biofilm inhibitory concentrations (MBIC), and minimal bactericidal concentrations (MBC) of CBD were assessed. CBD concentrations ≥ 2.5 μg/ml exhibited significant inhibition (p<0.001) against S. mutans biofilm growth, as well as, biofilm metabolic activity, lactate dehydrogenase (LDH) activity, and extracellular polysaccharides (EPS) production. In the presence of nicotine, which upregulates biofilm formation, CBD demonstrated the same inhibitory effects on S. mutans growth and activities. CBD concentrations ≥ 0.47 μg/ml exhibited significant inhibition (p<0.003) against P. gingivalis biofilm growth. CBD reduced the hemagglutination activities of P. gingivalis and reduced the overall proteolytic activity. Concentrations of CBD ≥ 0.63 μg/ml provided an inhibitory effect on lysine-specific gingipain. The results of these studies demonstrate that CBD has antibacterial activities against S. mutans and P. gingivalis growth and virulence factors related to caries and periodontal diseases, respectively.Item Attachment and proliferation of dental pulp stem cells on dentine treated with different regenerative endodontic protocols(Wiley, 2017) Alghilan, M. A.; Windsor, L. Jack; Palasuk, Jadesada; Yassen, Ghaeth H.; Department of Endodontics, School of DentistryAim To investigate the attachment and proliferation of dental pulp stem cells (DPSC) on dentine treated with various endodontic regeneration protocols. Methodology Standardized dentine samples were irrigated with sodium hypochlorite (1.5% NaOCl) and ethylenediaminetetraacetic acid (17% EDTA) and randomized into four treatment groups and two control groups. The treatment groups were treated with a clinically used concentration of triple antibiotic paste (TAP), double antibiotic paste (DAP), calcium hydroxide (Ca(OH)2) or diluted TAP in a methylcellulose system (DTAP) for 1 week. Each sample in the treatment groups was then irrigated with EDTA. The two control groups were treated with EDTA or received no treatment. Dental pulp stem cells were seeded on each dentine specimen (10 000 cells). Lactate dehydrogenase activity assays were then performed to evaluate the attached DPSC after 1 day of incubation. Water-soluble tetrazolium assays were used to determine DPSC proliferation after three additional days of incubation. Friedman's test followed by least significant difference were used for statistical analyses (α = 0.05). Results Triple antibiotic paste and DTAP regeneration protocols, as well as EDTA-treated dentine, caused significant increases in DPSC attachment to dentine. Triple antibiotic paste, DAP and Ca(OH)2 regeneration protocols caused significant reductions in DPSC proliferation on dentine. However, the DTAP regeneration protocol did not have any significant negative effects on DPSC proliferation. Conclusions The clinically used endodontic regeneration protocols that include the use of TAP, DAP or Ca(OH)2 medicament negatively affected DPSC proliferation on dentine. However, the use of DTAP medicament during regenerative endodontic treatment may not adversely affect the proliferation of DPSC.Item BENS, a novel regulator of bone/cartilage healing(2013) Labban, Nawaf Yousef; Windsor, L. Jack; Song, Fengyu; Ghoneima, Ahmed; Bruzzaniti, Angela; Allen, Matthew R.; Cameron, Jo AnnEnhancing osteoblast proliferation, survival, and extracellular matrix protein secretion are potential therapeutic approaches to treat bone fractures and diseases such as osteoporosis. BENS is a traditional medicine used in many countries such as India for thousands of years to treat many diseases including bone diseases. In this study, molecular, cell-based and in vivo approaches were utilized to investigate the effects of BENS on bone and cartilage regeneration. An osteosarcoma cell line (MG63) was incubated in serum free media with and without 0.8 mg/ml of BENS. BENS significantly increased cell survival up to 30 days and these cells retained their ability to proliferate in fresh media with serum. After adding BENS, there were statistically significant decreases in the expression of both anti-apoptotic and pro-apoptotic proteins. An in vivo non-critical size segmental bone defect Xenopus system was used to evaluate the ability of BENS to enhance cartilage formation. After a small segment of the anterior hemisection of the tarsus bone was excised, the frogs were divided into three groups and given subcutaneous injections of either phosphate-buffered saline or BENS once daily for 30 days and then bone/cartilage formation evaluated. The total cartilage area/total section area was significantly increased (2.6 fold) in the BENS treated samples. In an osteoporotic rat model, the anabolic properties of BENS on bone mass were assessed by histomorphometric analyses. Ovariectomized (OVX) rats received daily intraperitoneal injections for 4 weeks. Bone formation rates (BFRs) for the cortical periosteal bone surface of the midshaft tibia were 383.2, 223.9, 308.8, 304.9, and 370.9 µm3/µm2/year, and for the trabecular surface were 82.2, 113, 212.1, 157, and 165 µm3/µm2/year for the sham, OVX, PTH, 3 mg/kg BENS, and 30 mg/kg BENS groups, respectively. BENS increased both trabecular and cortical BFRs. It generated better results on cortical periosteal bone surface than did PTH. Taken together, these findings suggest that BENS promotes osteoblast survival due to its effects on altering the balance between pro-apoptotic and anti-apoptotic proteins. In addition, in vivo studies revealed that BENS enhanced cartilage formation in Xenopus and BFRs in rats. Therefore, BENS may possess anabolic bone/cartilage properties.Item Combined effects of soft drinks and nicotine on Streptococcus mutans metabolic activity and biofilm formation(J-STAGE, 2021-01) Mokeem, Lamia S.; Willis, Lisa H.; Windsor, L. Jack; Cook, N. Blaine; Eckert, George; Gregory, Richard L.; Cariology, Operative Dentistry and Dental Public Health, School of DentistryThe purpose of this study was to explore the effects of nicotine on the activity of Streptococcus mutans (S. mutans) in soft drinks. Regular soft drinks contain large proportions of high-fructose corn syrup (HFCS), which increases the activity of S. mutans resulting in high-caries risk compared with sugar-free soft drinks. Nicotine use exhibits a strong correlation with increased S. mutans biofilm formation. The soft drinks chosen were (Coca-Cola Classic, Diet Coke, Coca-Cola Zero Sugar, Caffeine-Free Coca-Cola, Caffeine-Free Diet Coke, Caffeine-Free Coca-Cola Zero Sugar). S. mutans was grown overnight in tryptic soy broth; nicotine was diluted in tryptic soy broth supplemented with 1.0% sucrose followed by soft drinks in dilution of 1:3. Total growth absorbance and biofilm growth were determined by spectrophotometry, absorbance measured to determine biofilm formation, and metabolic activity quantified. One-way ANOVA showed a considerable effect for HFCS and caffeine in the presence of nicotine and their interaction in all measures. Results showed sugar-free caffeinated colas demonstrated significant effect in inhibiting S. mutans biofilm formation and metabolic activity with nicotine. Nicotine-induced S. mutans increased biofilm formation and metabolic activity in the presence of HFCS and caffeine in soft drinks. In conclusion, smokers should consider sugar-free caffeinated versions to minimize the chance of developing dental caries dut to the reduction of biofilm formation.Item Doxycycline-loaded nanotube-modified adhesives inhibit MMP in a dose-dependent fashion(Springer Nature, 2018-04) Palasuk, Jadesada; Windsor, L. Jack; Platt, Jeffrey A.; Lvov, Yuri; Geraldeli, Saulo; Bottino, Marco C.; Biomedical Sciences and Comprehensive Care, School of DentistryOBJECTIVES: This article evaluated the drug loading, release kinetics, and matrix metalloproteinase (MMP) inhibition of doxycycline (DOX) released from DOX-loaded nanotube-modified adhesives. DOX was chosen as the model drug, since it is the only MMP inhibitor approved by the U.S. Food and Drug Administration. MATERIALS AND METHODS: Drug loading into the nanotubes was accomplished using DOX solution at distinct concentrations. Increased concentrations of DOX significantly improved the amount of loaded DOX. The modified adhesives were fabricated by incorporating DOX-loaded nanotubes into the adhesive resin of a commercial product. The degree of conversion (DC), Knoop microhardness, DOX release kinetics, antimicrobial, cytocompatibility, and anti-MMP activity of the modified adhesives were investigated. RESULTS: Incorporation of DOX-loaded nanotubes did not compromise DC, Knoop microhardness, or cell compatibility. Higher concentrations of DOX led to an increase in DOX release in a concentration-dependent manner from the modified adhesives. DOX released from the modified adhesives did not inhibit the growth of caries-related bacteria, but more importantly, it did inhibit MMP-1 activity. CONCLUSIONS: The loading of DOX into the nanotube-modified adhesives did not compromise the physicochemical properties of the adhesives and the released levels of DOX were able to inhibit MMP activity without cytotoxicity. CLINICAL SIGNIFICANCE: Doxycycline released from the nanotube-modified adhesives inhibited MMP activity in a concentration-dependent fashion. Therefore, the proposed nanotube-modified adhesive may hold clinical potential as a strategy to preserve resin/dentin bond stability.Item Effect of a modified adhesive system with encapsulated arginine and calcium carbonate on dentin permeability(Wiley, 2023-08) AlShehri, Aram Mushabbab; Kamocki, Krzysztof; Viana, Ítallo Emídio Lira; Scaramucci, Taís; Hara, Anderson; Windsor, L. Jack; Platt, Jeffrey A.; Cook, Norman Blaine; Sochacki, Sabrina Feitosa; Biomedical and Applied Sciences, School of DentistryTo modify an adhesive system with halloysite clay nanotubes (HNTs) containing arginine and calcium carbonate and to evaluate their cytocompatibility, viscosity and efficacy in reducing dentin permeability. HNTs containing arginine and calcium carbonate were incorporated into the primer and adhesive of a three-step adhesive system (SBMP), and their viscosity was measured. Discs (n = 4/group) were prepared: SBMP (control), HNT-PR (modified primer), HNT-ADH (modified adhesive) and HNT-PR + ADH (modified primer and adhesive) were evaluated regarding cell death and viability. Dentin discs were prepared and randomly assigned into the following treatments (n = 10): NC (no treatment), SBMP, HNT-PR, HNT-ADH, HNT-PR + ADH and COL (Colgate® Sensitive Pro-relief™ prophylaxis paste). After, they were submitted to an erosive-abrasive cycling. Dentin permeability (hydraulic conductance) was evaluated at baseline, 24 h after treatment and after cycling. Both the modified primer and adhesive showed significantly higher viscosity than their controls. Group HNT-PR resulted in significantly higher cytotoxicity when compared to SBMP and HNT-PR + ADH groups. Group HNT-ADH resulted in the highest cell viability compared to all other groups. All groups showed significantly lower dentin permeability when compared to the NC group. Post-cycling, SBMP and HNT-ADH groups showed significantly lower permeability when compared to COL group. The addition of encapsulated arginine and calcium carbonate did not affect the cytocompatibility of the materials nor their ability to reduce dentin permeability.Item The effect of cigarette smoking on the virulence of streptococcus mutans caries and cardiovascular diseases-epidemiological analysis and in vitro studies(2010) Zheng, Cunge; Gregory, Richard L.; Windsor, L. Jack; Kowolik, Michael J.; Steele, Gregory K.; Holt, Robert G.The impact of tobacco smoking on human health is well documented. The influence of smoking on tooth loss and cardiovascular diseases was investigated in the current study via both epidemiology and in vitro studies. From analyzing the 2006 Behavioral Risk Factor Surveillance System (2006 BRFSS) database, we confirmed that smoking was significantly associated with the number of teeth lost in a dose-dependent manner and smoking cessation reduced the risk when compared to those subjects continuing to smoke. In addition, the virulence factors related to caries were compared between Streptococcus mutans and Streptococcus gordonii in response to cigarette smoking condensate (CSC) treatment. We observed that S. gordonii was more susceptible to CSC treatment than S. mutans. CSC significantly enhanced S. mutans sucrose-dependent and independent adherence. Western blot assays revealed that several bacterial surface proteins including glucosyltransferase (GTF), glucan-binding proteins and antigen I/II, were significantly upregulated for the treated S. mutans. These findings suggested that the oral environment with CSC may favor a cariogenic dominant composition, which may increase the risk for smokers to develop caries. We also found that smoking and oral health status modified each other and synergistically increased the risk of CVD and this joint effect was more pronounced among the youngest age group using the 2006 BRFSS database. To further understand the joint effect, we conducted an in vitro study to investigate bacterial attachment to fibronectin and endothelial cells in response to smoking condensate treatment. Our study clearly demonstrated CSC significantly enhanced S. mutans attachment to both soluble and immobilized fibronectin as well as endothelial cells. Furthermore, our data suggested that bacteria possessed several adhesins that bound to host tissues and endothelial cells also had multiple receptors for bacterial attachment. Among these adhesins, antigen I/II seemed essential for bacterial attachment to endothelial cells without CSC. The knowledge of bacterial attachment to host tissues in the presence of CSC may help in developing different preventive or therapeutic strategies against attachment and colonization of the host by S. mutans.Item Effect of nicotine on streptococcus mutans(2014-11) Huang, Ruijie; Gregory, Richard L.; Tu, Wanzhu; Windsor, L. Jack; Wu, Christine; Song, FengyuStreptococcus mutans is a key contributor to dental caries. Smokers have increased caries, but the association between tobacco, nicotine, caries and S. mutans growth is little investigated. In the first section, seven S. mutans strains were used for screening. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm inhibitory concentration (MBIC) were 16 mg/ml (0.1 M), 32 mg/ml (0.2 M), and 16 mg/ml (0.1 M), respectively, for most of the S. mutans strains. Growth of planktonic S. mutans cells was significantly repressed by 2.0-8.0 mg/ml nicotine concentrations. Biofilm formation and metabolic activity of S. mutans was increased in a nicotine-dependent manner up to 16.0 mg/ml. Scanning electron microscopy (SEM) revealed higher nicotine-treated S. mutans had thicker biofilm and more spherical bacterial cells than lower concentrations of nicotine. In the second section, confocal laser scanning microscopy (CLSM) results demonstrated that both biofilm bacterial cell numbers and extracellular polysaccharide (EPS) synthesis were increased by nicotine. Glucosyltransferase (Gtf) and glucan binding protein A (GbpA) protein expression of S. mutans planktonic cells were upregulated, while GbpB protein expression of biofilm cells were downregulated by nicotine. The mRNA expression of those genes were mostly consistent with their protein results. Nicotine was not directly involved in S. mutans LDH activity. However, since it increased the total number of bacterial cells in biofilm; total LDH activity of S. mutans biofilm was increased. In the third section, a PCR-based multiple species cell counting (PCR-MSCC) method was designed to investigate the effect of nicotine on S. mutans in a ten mixed species culture. The absolute S. mutans number in mixed biofilm culture was increased but the percentage of S. mutans in the total number of bacterial cells was not changed. In conclusion, nicotine enhanced biofilm formation and biofilm metabolism of S. mutans, through stimulating S. mutans planktonic cell Gtfs and Gbps expression. This leads to more planktonic cells attaching to dental biofilm. Increased S. mutans cell numbers, in biofilms of single species or ten mixed species, resulted in higher overall LDH activity. More lactic acid may be generated and contribute to caries development in smokers.Item Effects of DynaMatrix® Membrane on Angiogenic Cytokine Expression From Human Dental Pulp Stem Cells(2013) Baker, Ryan William; Spolnik, Kenneth Jacob, 1950-; Ehrlich, Ygal; Vail, Mychel Macapagal, 1969-; Song, Fengyu; Legan, Joseph J.; Zunt, Susan L., 1951-; Windsor, L. JackThe aim of this current study was to determine if the exposure of human dental pulp stem cells (HDPSC) to the DynaMatrix membrane will result in an increased production of angiogenic cytokines that are critical for pulp/root regeneration. Angiogenesis cytokine arrays have been established as a viable method for assessing expression of cytokines.20 HDPSC were chosen as they are expected to be found in the apical papilla and the infected immature root canal system of teeth that current regenerative endodontic techniques are designed to treat.Item Effects of DynaMatrix® on angiogenic cytokine expression from human dental pulp fibroblasts : an in vitro study(2015) Adams, Joseph Benjamin; Spolnik, Kenneth Jacob, 1950-; Erhlich, Ygal; Bringas, Josef; Warner, Ned A. (Ned Alan); Zunt, Susan L., 1951-; Windsor, L. JackEFFECTS OF DYNAMATRIX® ON ANGIOGENIC CYTOKINE EXPRESSION FROM HUMAN DENTAL PULP FIBROBLASTS: AN IN VITRO STUDY by Joseph Benjamin Adams Indiana University School of Dentistry Indianapolis, IN Introduction: An exogenous scaffold may lead to more predictable pulp tissue regeneration and continued root formation in a regenerative endodontic procedure. DynaMatrix® is a natural membrane scaffold made of porcine small intestine, currently used in periodontal regenerative surgeries. Objective: The purpose of this study was to investigate if human dental pulp fibroblasts (HDPFs) seeded on DynaMatrix® membrane would result in an increase in the expression of angiogenic cytokines. Materials and Methods: HDPFs (75,000 per well) were seeded in 6-well plates. Three groups were tested: Group 1 (C): HDPFs in 70 media only; Group 2 (M): DynaMatrix® (Cook Biotech, Indianapolis, IN) alone in media; and Group 3 (C+M): HDPFs seeded on DynaMatrix® membranes. After 72 hours of incubation in serum positive, the conditioned media were collected and analyzed for the expression of 20 angiogenic cytokines utilizing RayBiotech Inc., arrays per the manufacturer’s instruction. The data were analyzed by ANOVA. Results: Group M was significantly higher than C for bFGF (p = 0.0023). C+M was significantly higher than M for ANG (p = 0.0104); GRO (p = 0.0003); IFN-γ (p = 0.0023); IL-6 (p = 0.0003); IL-8 (p = 0.0003); Leptin (p = 0.0003); MCP-1 (p = 0.0104); TIMP-1 (p = 0.0190); TIMP-2 (0.0123). C was significantly higher than C+M for ANG (p = 0.0104); MCP-1 (p = 0.0104); and THPO (p = 0.0308). Cytokines such as b-FGF, ANG, and leptin promote angiogenesis, and stimulate migration and proliferation of cells. Conclusion: The cytokine expression profile from the cells seeded on DynaMatrix® suggests that it might be a suitable scaffold for regenerative endodontic procedures. It could improve vascularization by increasing angiogenic cytokines in the microenvironment of the treated root canal and supporting tissue regeneration.