- Browse by Author
Browsing by Author "Williamson, Elizabeth A."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Drugging the Cancers Addicted to DNA Repair(Oxford University Press, 2017-11-01) Nickoloff, Jac A.; Jones, Dennie; Lee, Suk-Hee; Williamson, Elizabeth A.; Hromas, Robert; Department of Biochemistry and Molecular Biology, School of MedicineDefects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects.Item EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair(Public Library of Science (PloS), 2015-12) Wu, Yuehan; Lee, Suk-Hee; Williamson, Elizabeth A.; Reinert, Brian L.; Cho, Ju Hwan; Xia, Fen; Jaiswal, Aruna Shanker; Srinivasan, Gayathri; Patel, Bhavita; Brantley, Alexis; Zhou, Daohong; Shao, Lijian; Pathak, Rupak; Hauer-Jensen, Martin; Singh, Sudha; Kong, Kimi; Wu, Xaiohua; Kim, Hyun-Suk; Beissbarth, Timothy; Gaedcke, Jochen; Burma, Sandeep; Nickoloff, Jac A.; Hromas, Robert A.; Department of Biochemistry and Molecular Biology, IU School of MedicineReplication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5' end resection near the fork junction, which permits 3' single strand invasion of a homologous template for fork restart. This 5' end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5' DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5' overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ.Item Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks(American Society for Biochemistry and Molecular Biology, 2017-02-17) Kim, Hyun-Suk; Nickoloff, Jac A.; Wu, Yuehan; Williamson, Elizabeth A.; Sidhu, Gurjit Singh; Reinart, Brian L.; Jaiswal, Aruna S.; Srinivasan, Gayathri; Patel, Bhavita; Kong, Kimi; Burma, Sandeep; Lee, Suk-Hee; Hromas, Robert A.; Department of Biochemistry & Molecular Biology, IU School of MedicineReplication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5' end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5'-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5' end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5'-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5' end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks.Item The homologous recombination component EEPD1 is required for genome stability in response to developmental stress of vertebrate embryogenesis(Informa UK (Taylor & Francis), 2016) Chun, Changzoon; Wu, Yuehan; Lee, Suk-Hee; Williamson, Elizabeth A.; Reinert, Brian L.; Jaiswal, Aruna Shanker; Nickoloff, Jac A.; Hromas, Robert A.; Department of Biochemistry & Molecular Biology, IU School of MedicineStressed replication forks can be conservatively repaired and restarted using homologous recombination (HR), initiated by nuclease cleavage of branched structures at stalled forks. We previously reported that the 5' nuclease EEPD1 is recruited to stressed replication forks, where it plays critical early roles in HR initiation by promoting fork cleavage and end resection. HR repair of stressed replication forks prevents their repair by non-homologous end-joining (NHEJ), which would cause genome instability. Rapid cell division during vertebrate embryonic development generates enormous pressure to maintain replication speed and accuracy. To determine the role of EEPD1 in maintaining replication fork integrity and genome stability during rapid cell division in embryonic development, we assessed the role of EEPD1 during zebrafish embryogenesis. We show here that when EEPD1 is depleted, zebrafish embryos fail to develop normally and have a marked increase in death rate. Zebrafish embryos depleted of EEPD1 are far more sensitive to replication stress caused by nucleotide depletion. We hypothesized that the HR defect with EEPD1 depletion would shift repair of stressed replication forks to unopposed NHEJ, causing chromosome abnormalities. Consistent with this, EEPD1 depletion results in nuclear defects including anaphase bridges and micronuclei in stressed zebrafish embryos, similar to BRCA1 deficiency. These results demonstrate that the newly characterized HR protein EEPD1 maintains genome stability during embryonic replication stress. These data also imply that the rapid cell cycle transit seen during embryonic development produces replication stress that requires HR to resolve.Item A humanized monoclonal antibody against the endothelial chemokine CCL21 for the diagnosis and treatment of inflammatory bowel disease(PLOS, 2021-07) Capitano, Maegan L.; Jaiswal, Aruna; Broxmeyer, Hal E.; Pride, Yilianys; Glover, Sarah; Amlashi, Fatemah G.; Kirby, Austin; Srinivasan, Gayathri; Williamson, Elizabeth A.; Mais, Daniel; Hromas, Robert; Microbiology and Immunology, School of MedicineChemokines are small proteins that promote leukocyte migration during development, infection, and inflammation. We and others isolated the unique chemokine CCL21, a potent chemo-attractant for naïve T-cells, naïve B-cells, and immature dendritic cells. CCL21 has a 37 amino acid carboxy terminal extension that is distinct from the rest of the chemokine family, which is thought to anchor it to venule endothelium where the amino terminus can interact with its cognate receptor, CCR7. We and others have reported that venule endothelium expressing CCL21 plays a crucial role in attracting naïve immune cells to sites of antigen presentation. In this study we generated a series of monoclonal antibodies to the amino terminus of CCL21 in an attempt to generate an antibody that blocked the interaction of CCL21 with its receptor CCR7. We found one humanized clone that blocked naïve T-cell migration towards CCL21, while memory effector T-cells were less affected. Using this monoclonal antibody, we also demonstrated that CCL21 is expressed in the mucosal venule endothelium of the large majority of inflammatory bowel diseases (IBD), including Crohn's disease, ulcerative colitis, and also in celiac disease. This expression correlated with active IBD in 5 of 6 cases, whereas none of 6 normal bowel biopsies had CCL21 expression. This study raises the possibility that this monoclonal antibody could be used to diagnose initial or recurrent of IBD. Significantly, this antibody could also be used for therapeutic intervention in IBD by selectively interfering with recruitment of naïve immune effector cells to sites of antigen presentation, without harming overall memory immunity.Item Metnase Mediates Loading of Exonuclease 1 onto Single Strand Overhang DNA for End Resection at Stalled Replication Forks(American Society for Biochemistry and Molecular Biology, 2017-01-27) Kim, Hyun-Suk; Williamson, Elizabeth A.; Nickoloff, Jac A.; Hromas, Robert A.; Lee, Suk-Hee; Biochemistry and Molecular Biology, School of MedicineStalling at DNA replication forks generates stretches of single-stranded (ss) DNA on both strands that are exposed to nucleolytic degradation, potentially compromising genome stability. One enzyme crucial for DNA replication fork repair and restart of stalled forks in human is Metnase (also known as SETMAR), a chimeric fusion protein consisting of a su(var)3-9, enhancer-of-zeste and trithorax (SET) histone methylase and transposase nuclease domain. We previously showed that Metnase possesses a unique fork cleavage activity necessary for its function in replication restart and that its SET domain is essential for recovery from hydroxyurea-induced DNA damage. However, its exact role in replication restart is unclear. In this study, we show that Metnase associates with exonuclease 1 (Exo1), a 5'-exonuclease crucial for 5'-end resection to mediate DNA processing at stalled forks. Metnase DNA cleavage activity was not required for Exo1 5'-exonuclease activity on the lagging strand daughter DNA, but its DNA binding activity mediated loading of Exo1 onto ssDNA overhangs. Metnase-induced enhancement of Exo1-mediated DNA strand resection required the presence of these overhangs but did not require Metnase's DNA cleavage activity. These results suggest that Metnase enhances Exo1-mediated exonuclease activity on the lagging strand DNA by facilitating Exo1 loading onto a single strand gap at the stalled replication fork.Item Metnase promotes restart and repair of stalled and collapsed replication forks(Oxford University Press, 2010-05-10) De Haro, Leyma P.; Wray, Justin; Williamson, Elizabeth A.; Durant, Stephen T.; Corwin, Lori; Gentry, Amanda C.; Osheroff, Neil; Lee, Suk-Hee; Hromas, Robert; Nickoloff, Jac A.; Biochemistry and Molecular Biology, School of MedicineMetnase is a human protein with methylase (SET) and nuclease domains that is widely expressed, especially in proliferating tissues. Metnase promotes non-homologous end-joining (NHEJ), and knockdown causes mild hypersensitivity to ionizing radiation. Metnase also promotes plasmid and viral DNA integration, and topoisomerase IIα (TopoIIα)-dependent chromosome decatenation. NHEJ factors have been implicated in the replication stress response, and TopoIIα has been proposed to relax positive supercoils in front of replication forks. Here we show that Metnase promotes cell proliferation, but it does not alter cell cycle distributions, or replication fork progression. However, Metnase knockdown sensitizes cells to replication stress and confers a marked defect in restart of stalled replication forks. Metnase promotes resolution of phosphorylated histone H2AX, a marker of DNA double-strand breaks at collapsed forks, and it co-immunoprecipitates with PCNA and RAD9, a member of the PCNA-like RAD9–HUS1–RAD1 intra-S checkpoint complex. Metnase also promotes TopoIIα-mediated relaxation of positively supercoiled DNA. Metnase is not required for RAD51 focus formation after replication stress, but Metnase knockdown cells show increased RAD51 foci in the presence or absence of replication stress. These results establish Metnase as a key factor that promotes restart of stalled replication forks, and implicate Metnase in the repair of collapsed forks.