- Browse by Author
Browsing by Author "Wijsman, Ellen M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Convergence of genes and cellular pathways dysregulated in autism spectrum disorders(Elsevier, 2014-03-25) Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A.S.; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T.; Oliveira, Barbara; Marshall, Christian R.; Magalhaes, Tiago R.; Lowe, Jennifer K.; Howe, Jennifer L.; Griswold, Anthony J.; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A.; De Jonge, Maretha V.; Cuccaro, Michael; Crawford, Emily L.; Correia, Catarina T.; Conroy, Judith; Conceicao, Ines C.; Chiocchetti, Andreas G.; Casey, Jillian P.; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Roge´, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L. Alison; McGrew, Susan G.; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S.; Kolevzon, Alexander; Gonzalez, Patricia Jimenez; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A.; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Cafe, Catia; Brennan, Sean; Bourgeron, Thomas; Thomas, Patrick F.; Bolte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J.; Anthony J., Evdokia; Almeida, Joana; Wijsman, Ellen M.; Vieland, Veronica J.; Vicente, Astrid M.; Schellenberg, Gerard D.; Pericak-Vance, Margaret; Paterson, Andrew D.; Parr, Jeremy R.; Oliveira, Guiomar; Nurnberger, John I.; Monaco, Anthony P.; Maestrini, Elena; Klauck, Sabine M.; Hakonarson, Hakon; Haines, Jonathan L.; Geschwind, Daniel H.; Freitag, Christine M.; Folstein, Susan E.; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S.; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W.; Psychiatry, School of MedicineRare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10−5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10−15, ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.Item The Advisory Group on Risk Evidence Education for Dementia: Multidisciplinary and Open to All(IOS Press, 2022) Rosen, Allyson C.; Arias, Jalayne J.; Ashford, J. Wesson; Blacker, Deborah; Chhatwal, Jasmeer P.; Chin, Nathan A.; Clark, Lindsay; Denny, Sharon S.; Goldman, Jill S.; Gleason, Carey E.; Grill, Joshua D.; Heidebrink, Judith L.; Henderson, Victor W.; Lavacot, James A.; Lingler, Jennifer H.; Menon, Malavika; Nosheny, Rachel L.; Oliveira, Fabricio F.; Parker, Monica W.; Rahman-Filipiak, Annalise; Revoori, Anwita; Rumbaugh, Malia C.; Sanchez, Danurys L.; Schindler, Suzanne E.; Schwarz, Christopher G.; Toy, Leslie; Tyrone, Jamie; Walter, Sarah; Wang, Li-san; Wijsman, Ellen M.; Zallen, Doris T.; Aggarwal, Neelum T.; Medical and Molecular Genetics, School of MedicineThe brain changes of Alzheimer’s disease and other degenerative dementias begin long before cognitive dysfunction develops, and in people with subtle cognitive complaints, clinicians often struggle to predict who will develop dementia. The public increasingly sees benefits to accessing dementia risk evidence (DRE) such as biomarkers, predictive algorithms, and genetic information, particularly as this information moves from research to demonstrated usefulness in guiding diagnosis and clinical management. For example, the knowledge that one has high levels of amyloid in the brain may lead one to seek amyloid reducing medications, plan for disability, or engage in health promoting behaviors to fight cognitive decline. Researchers often hesitate to share DRE data, either because they are insufficiently validated or reliable for use in individuals, or there are concerns about assuring responsible use and ensuring adequate understanding of potential problems when one’s biomarker status is known. Concerns include warning people receiving DRE about situations in which they might be compelled to disclose their risk status potentially leading to discrimination or stigma. The Advisory Group on Risk Evidence Education for Dementia (AGREEDementia) welcomes all concerned with how best to share and use DRE. Supporting understanding in clinicians, stakeholders, and people with or at risk for dementia and clearly delineating risks, benefits, and gaps in knowledge is vital. This brief overview describes elements that made this group effective as a model for other health conditions where there is interest in unfettered collaboration to discuss diagnostic uncertainty and the appropriate use and communication of health-related risk information.