- Browse by Author
Browsing by Author "Wickersham, Nancy"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Preoperative plasma club (clara) cell secretory protein levels are associated with primary graft dysfunction after lung transplantation(Wiley Blackwell (Blackwell Publishing), 2014-02) Shah, Rupal J.; Wickersham, Nancy; Lederer, David J.; Palmer, Scott M.; Cantu, Edward; Diamond, Joshua M.; Kawut, Steven M.; Lama, Vibha N.; Bhorade, Sangeeta; Crespo, Maria; Demissie, Ejigayehu; Sonett, Joshua; Wille, Keith; Orens, Jonathan; Weinacker, Ann; Shah, Pali; Arcasoy, Selim; Wilkes, David S.; Christie, Jason D.; Ware, Lorraine B.; Department of Medicine, IU School of MedicineInherent recipient factors, including pretransplant diagnosis, obesity and elevated pulmonary pressures, are established primary graft dysfunction (PGD) risks. We evaluated the relationship between preoperative lung injury biomarkers and PGD to gain further mechanistic insight in recipients. We performed a prospective cohort study of recipients in the Lung Transplant Outcomes Group enrolled between 2002 and 2010. Our primary outcome was Grade 3 PGD on Day 2 or 3. We measured preoperative plasma levels of five biomarkers (CC-16, sRAGE, ICAM-1, IL-8 and Protein C) that were previously associated with PGD when measured at the postoperative time point. We used multivariable logistic regression to adjust for potential confounders. Of 714 subjects, 130 (18%) developed PGD. Median CC-16 levels were elevated in subjects with PGD (10.1 vs. 6.0, p<0.001). CC-16 was associated with PGD in nonidiopathic pulmonary fibrosis (non-IPF) subjects (OR for highest quartile of CC-16: 2.87, 95% CI: 1.37, 6.00, p=0.005) but not in subjects with IPF (OR 1.38, 95% CI: 0.43, 4.45, p=0.59). After adjustment, preoperative CC-16 levels remained associated with PGD (OR: 3.03, 95% CI: 1.26, 7.30, p=0.013) in non-IPF subjects. Our study suggests the importance of preexisting airway epithelial injury in PGD. Markers of airway epithelial injury may be helpful in pretransplant risk stratification in specific recipients.Item The relationship between plasma lipid peroxidation products and primary graft dysfunction after lung transplantation is modified by donor smoking and reperfusion hyperoxia(Elsevier, 2016-04) Diamond, Joshua M.; Porteous, Mary K.; Roberts, L. Jackson; Wickersham, Nancy; Rushefski, Melanie; Kawut, Steven M.; Shah, Rupal J.; Cantu, Edward; Lederer, David J.; Chatterjee, Shampa; Lama, Vibha N.; Bhorade, Sangeeta; Crespo, Maria; McDyer, John; Wille, Keith; Orens, Jonathan; Weinacker, Ann; Arcasoy, Selim; Shah, Pali D.; Wilkes, David S.; Hage, Chadi; Palmer, Scott M.; Snyder, Laurie; Calfee, Carolyn S.; Ware, Lorraine B.; Christie, Jason D.; Medicine, School of MedicineBACKGROUND: Donor smoking history and higher fraction of inspired oxygen (FIO2) at reperfusion are associated with primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidative injury biomarkers would be elevated in PGD, with higher levels associated with donor exposure to cigarette smoke and recipient hyperoxia at reperfusion. METHODS: We performed a nested case-control study of 72 lung transplant recipients from the Lung Transplant Outcomes Group cohort. Using mass spectroscopy, F2-isoprostanes and isofurans were measured in plasma collected after transplantation. Cases were defined in 2 ways: grade 3 PGD present at day 2 or day 3 after reperfusion (severe PGD) or any grade 3 PGD (any PGD). RESULTS: There were 31 severe PGD cases with 41 controls and 35 any PGD cases with 37 controls. Plasma F2-isoprostane levels were higher in severe PGD cases compared with controls (28.6 pg/ml vs 19.8 pg/ml, p = 0.03). Plasma F2-isoprostane levels were higher in severe PGD cases compared with controls (29.6 pg/ml vs 19.0 pg/ml, p = 0.03) among patients reperfused with FIO2 >40%. Among recipients of lungs from donors with smoke exposure, plasma F2-isoprostane (38.2 pg/ml vs 22.5 pg/ml, p = 0.046) and isofuran (66.9 pg/ml vs 34.6 pg/ml, p = 0.046) levels were higher in severe PGD compared with control subjects. CONCLUSIONS: Plasma levels of lipid peroxidation products are higher in patients with severe PGD, in recipients of lungs from donors with smoke exposure, and in recipients exposed to higher Fio2 at reperfusion. Oxidative injury is an important mechanism of PGD and may be magnified by donor exposure to cigarette smoke and hyperoxia at reperfusion.