- Browse by Author
Browsing by Author "White, Kenneth"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Identification of Extracellular Wnt Inhibitors for Novel Synergistic Anabolic Action on the Skeleton(2023-07) Choi, Roy Byung-Jun; Robling, Alexander; Bidwell, Joseph; Thompson, William; Pavalko, Fredrick; White, KennethThe Wnt pathway has been an obvious target for designing skeletal therapies, mainly based on the high-bone-mass phenotypes in patients with activating mutations in the Wnt co-receptors Lrp5 and Lrp6, or with inactivating mutations in the Lrp5/6 inhibitor Sost. An attractive property of the Wnt pathway is that it stimulates anabolic action in bone cells. The powerful anabolic potential of manipulating Wnt signaling in bone has been demonstrated by the recent FDA approval of sclerostin antibody (Scl-mAb) EvenityTM (Romosozumab) for the treatment of osteoporosis. However, an increased risk of cardiovascular events was reported, triggering the FDA to issue a ‘black box warning’ requirement for romosozumab. One potential solution to lower the risk of adverse events is to reduce the medication dose. Reducing the dose of Scl-mAb, while maintaining the anabolic potential of the drug, will likely provide a safer and more cost-effective strategy to harness Wnt for fracture prevention. Here, we found that dual inhibition of sclerostin and Dkk1 produced extremely potent synergistic bone anabolic effects in the cancellous compartment, using both genetic and pharmacological models. Further, much lower total doses of dual antibody treatment, given at optimized proportions, generated equivalent trabecular bone anabolic effects as Scl-mAb alone. On the contrary, we looked for other candidates that might potentiate the cortical effects of sclerostin inhibition. We found that either Sostdc1 or Notum deletion results in high bone mass, specifically in the cortical compartment, with little to no effect in the cancellous compartment. Inhibition/deletion of Sostdc1 or Notum alone had no detectable effects (Sostdc1) or mild (Notum) cortical effects, but suppression of either target while co-supressing/deleting Sost improved bone mass disproportionately. In summary, these findings highlight the potential therapeutic role that combinational inhibition of different Wnt inhibitors generates, resulting in synergistic bone anabolic action in different/select skeletal compartments.Item Molecular Genetic Analysis of FGF23 Bioactivity in the Bone-Kidney Endocrine Axis(2009-06-23T21:29:44Z) Farrow, Emily; White, KennethHeritable disorders of phosphate handling are the most common cause of hypophosphatemic rickets in developed countries. Isolated renal phosphate wasting and subsequent low serum phosphate concentrations may result from a number of genetic disorders that include: autosomal dominant hypophosphatemic rickets (ADHR), X-linked hypophosphatemic rickets (XLH), and autosomal recessive hypophosphatemic rickets (ARHR). Fibroblast growth factor-23 (FGF23), identified as the causative gene in ADHR, is produced in bone and plays a central role in kidney phosphate regulation. Increased serum concentrations of FGF23 lead to renal phosphate wasting through down regulation of renal sodium-phosphate co-transporters. However, the molecular mechanisms of FGF23 bioactivity in hormonal phosphate regulation are largely unknown. An experimental focus of this dissertation was to investigate the molecular mechanisms of FGF23-mediated phosphate regulation in the bone-kidney hormonal axis. To this end, the role of Dentin Matrix Protein 1 (DMP1), newly identified as the gene responsible for ARHR, was further defined by the identification of a novel large deletion as well as testing the molecular consequences of DMP1 mutations. FGF23 requires a signaling complex composed of Klotho and an FGFR for bioactivity, however, the location and composition of the signaling complex is unknown. Klotho localizes to the renal distal convoluted tubule, whereas the sodium phosphate co-transporters are expressed within the renal proximal tubules. The molecular mechanisms of FGF23 signaling were investigated by isolating a novel marker of FGF23 bioactivity using array technology, determining the location of initial FGF23 signaling in the kidney, and by identifying a novel mutation in a receptor upstream of FGF23 production. Taken together, these results increase the knowledge of the molecular mechanisms of phosphate homeostasis in relation to FGF23 bioactivity, leading to the identification of potentially novel therapeutic targets.Item Nmp4 Suppresses Osteoanabolic Potency(2023-07) Heim, Crystal Noelle; Bidwell, Joseph; Wek, Ronald; White, Kenneth; Robling, Alexander; Plotkin, LilianTreating severe osteoporosis is limited to two strategies: 1. Stimulation of the parathyroid hormone receptor with analogs for parathyroid hormone (PTH) or parathyroid hormone related peptide, and 2. Stimulation of Wnt signaling via neutralization of sclerostin, a natural inhibitor of this pathway, with a monoclonal antibody (romosozumab-aqqg, Scl-mAb). Despite mobilizing distinct molecular and cellular pathways to stimulate bone gain, all their efficacies rapidly diminish. Identifying the barrier to enhancing potency is a clinical priority. We recently reported that mice harboring the conditional loss of the transcription factor Nmp4 (Nuclear Matrix Protein 4) in mesenchymal stem/progenitor cells (MSPCs) exhibited no measurable baseline effect on the skeleton but showed a significantly enhanced increase in bone formation during PTH therapy. Remarkably, (and unexpectedly) skeletal response to PTH therapy was not improved when Nmp4 was conditionally disabled at the osteoblast or osteocyte stages. For the present study, we hypothesized that the potency of any osteoanabolic drug is pre-programmed (and can be re-programmed) in osteoprogenitors. To test this hypothesis, we treated our global Nmp4-/- mice, various conditional knockout mice, and their controls with Scl-mAb. We observed a similar pattern of improved bone response in our mouse models, which we previously observed with the PTH therapy. That is, removal of Nmp4 early in osteoblast differentiation (MSPC) was required for an exaggerated bone-formation response to Scl-mAb therapy. Disabling Nmp4 later in osteogenic differentiation did not increase the potency of Scl-mAb. These data suggest that Nmp4 is part of a common barrier to improving the efficacy of any osteoanabolic. Potential pathways and actors that comprise the re-programming of Nmp4-/- MSPCs to support the exaggerated osteoanabolic effect on the skeleton are discussed.Item Phenotypic and Genotypic Characterization and Treatment of a Cohort with Familial Tumoral Calcinosis/Hyperostosis-Hyperphosphatemia Syndrome(Wiley, 2016-10) Ramnitz, Mary Scott; Gourh, Pravitt; Goldbach-Mansky, Raphaela; Wodajo, Felasfa; Ichikawa, Shoji; Econs, Michael J.; White, Kenneth; Molinolo, Alfredo; Chen, Marcus Y.; Heller, Theo; Del Rivero, Jaydira; Seo-Mayer, Patricia; Arabshahi, Bita; Jackson, Malaka B.; Hatab, Sarah; McCarthy, Edward; Guthrie, Lori C.; Brillante, Beth A.; Gafni, Rachel I.; Collins, Michael T.; Medicine, School of MedicineFamilial tumoral calcinosis (FTC)/hyperostosis-hyperphosphatemia syndrome (HHS) is a rare disorder caused by mutations in the genes encoding fibroblast growth factor-23 (FGF23), N-acetylgalactosaminyltransferase 3 (GALNT3), or KLOTHO. The result is functional deficiency of, or resistance to, intact FGF23 (iFGF23), causing hyperphosphatemia, increased renal tubular reabsorption of phosphorus (TRP), elevated or inappropriately normal 1,25-dihydroxyvitamin D3 (1,25D), ectopic calcifications and/or diaphyseal hyperostosis. Eight subjects with FTC/HHS were studied and treated. Clinical manifestations varied, even within families, ranging from asymptomatic to large, disabling calcifications. All subjects had hyperphosphatemia, increased TRP, and elevated or inappropriately normal 1,25D. C-terminal FGF23 was markedly elevated while iFGF23 was comparatively low, consistent with increased FGF23 cleavage. Radiographs ranged from diaphyseal hyperostosis to massive calcification. Two subjects with severe calcifications also had overwhelming systemic inflammation and elevated C-reactive protein (CRP). GALNT3 mutations were identified in 7 subjects; no causative mutation was found in the eighth. Biopsies from 4 subjects showed ectopic calcification and chronic inflammation, with areas of heterotopic ossification observed in 1 subject. Treatment with low phosphate diet, phosphate binders, and phosphaturia-inducing therapies was prescribed with variable response. One subject experienced complete resolution of a calcific mass after 13 months of medical treatment. In the 2 subjects with systemic inflammation, interleukin-1 (IL-1) antagonists significantly decreased CRP levels with resolution of calcinosis cutis and peri-lesional inflammation in one subject and improvement of overall well-being in both subjects. This cohort expands the phenotype and genotype of FTC/HHS and demonstrates the range of clinical manifestations despite similar biochemical profiles and genetic mutations. Overwhelming systemic inflammation has not been described previously in FTC/HHS; the response to IL-1 antagonists suggests that anti-inflammatory drugs may be useful adjuvants. In addition, this is the first description of heterotopic ossification reported in FTC/HHS, possibly mediated by the adjacent inflammation.Item The Role of Wnt Signaling in Bone Mechanotransduction(2019-11) Bullock, Whitney Ann; Robling, Alexander; Bidwell, Joseph; Plotkin, Lilian; Sankar, Uma; White, KennethThe aging US population is experiencing a growing incidence of osteoporosis, characterized by increased fracture risk and low bone mass. In skeletal tissue, canonical Wnt signaling is a critical regulator of bone mass, and dysregulation of the Wnt pathway has been implicated in numerous skeletal displasias. Some components of the Wnt signaling pathway have a clear role in bone homeostasis, particularly in the response of bone to altered mechanical environment. Other pathway components are more poorly defined. One important intracellular signal transduction node in the Wnt cascade is β- catenin, which modulates gene expression and cell-cell junctions, among other functions. During periods of disuse, β-catenin is degraded, leading to inhibition of Wnt targets. Here, I characterize the role of β-catenin in bone during a disuse challenge, using a genetic mouse model expressing an inducible constitively-active mutant form of β- catenin in the osteocyte population. I hypothesize that prevention of β-catenin degradation during disuse will prevent the bone wasting effects of mechanodeprivation. As a second goal, I focus on upstream (membrane-bound) modulation of Wnt. Here, I investigate the low-density lipoprotein receptor-related receptor 4 (Lrp4), in the regulation of bone mass and mechanotransduction. I generated an Lrp4 knockin mouse model harboring a missense mutation found among human patients with abnormally high bone mass. I hypothesize that the mutation compromises sclerostin action on bone cells. Understanding how each of these components of the Wnt signaling pathway interact, may lead to novel therapeutic targets for treatment of bone diseases.Item Severe vascular calcification and tumoral calcinosis in a family with hyperphosphatemia: a fibroblast growth factor 23 mutation identified by exome sequencing(Oxford University Press, 2014-12) Shah, Anuja; Miller, Clinton J.; Nast, Cynthia C.; Adams, Mark D.; Truitt, Barbara; Tayek, John A.; Tong, Lili; Mehtani, Parag; Monteon, Francisco; Sedor, John R.; Clinkenbeard, Erica L.; White, Kenneth; Mehrotra, Rajnish; LaPage, Janine; Dickson, Patricia; Adler, Sharon G.; Iyengar, Sudha K.; Department of Medical & Molecular Genetics, IU School of MedicineBACKGROUND: Tumoral calcinosis is an autosomal recessive disorder characterized by ectopic calcification and hyperphosphatemia. METHODS: We describe a family with tumoral calcinosis requiring amputations. The predominant metabolic anomaly identified in three affected family members was hyperphosphatemia. Biochemical and phenotypic analysis of 13 kindred members, together with exome analysis of 6 members, was performed. RESULTS: We identified a novel Q67K mutation in fibroblast growth factor 23 (FGF23), segregating with a null (deletion) allele on the other FGF23 homologue in three affected members. Affected siblings had high circulating plasma C-terminal FGF23 levels, but undetectable intact FGF23 or N-terminal FGF23, leading to loss of FGF23 function. CONCLUSIONS: This suggests that in human, as in experimental models, severe prolonged hyperphosphatemia may be sufficient to produce bone differentiation proteins in vascular cells, and vascular calcification severe enough to require amputation. Genetic modifiers may contribute to the phenotypic variation within and between families.Item Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease(Elsevier, 2022) Yanucil, Christopher; Kentrup, Dominik; Campos, Isaac; Czaya, Brian; Heitman, Kylie; Westbrook, David; Osis, Gunars; Grabner, Alexander; Wende, Adam R.; Vallejo, Julian; Wacker, Michael J.; Navarro-Garcia, Jose Alberto; Ruiz-Hurtado, Gema; Zhang, Fuming; Song, Yuefan; Linhardt, Robert J.; White, Kenneth; Kapiloff, Michael S.; Faul, Christian; Medical and Molecular Genetics, School of MedicineFibroblast growth factor (FGF) 23 is a phosphate-regulating hormone that is elevated in patients with chronic kidney disease and associated with cardiovascular mortality. Experimental studies showed that elevated FGF23 levels induce cardiac hypertrophy by targeting cardiac myocytes via FGF receptor isoform 4 (FGFR4). A recent structural analysis revealed that the complex of FGF23 and FGFR1, the physiologic FGF23 receptor in the kidney, includes soluble α-klotho (klotho) and heparin, which both act as co-factors for FGF23/FGFR1 signaling. Here, we investigated whether soluble klotho, a circulating protein with cardio-protective properties, and heparin, a factor that is routinely infused into patients with kidney failure during the hemodialysis procedure, regulate FGF23/FGFR4 signaling and effects in cardiac myocytes. We developed a plate-based binding assay to quantify affinities of specific FGF23/FGFR interactions, and found that soluble klotho and heparin mediate FGF23 binding to distinct FGFR isoforms. Heparin specifically mediated FGF23 binding to FGFR4, and increased FGF23 stimulatory effects on hypertrophic growth and contractility in isolated cardiac myocytes. When repetitively injected into two different mouse models with elevated serum FGF23 levels, heparin aggravated cardiac hypertrophy. We also developed a novel procedure for the synthesis and purification of recombinant soluble klotho, which showed anti-hypertrophic effects in FGF23-treated cardiac myocytes. Thus, soluble klotho and heparin act as independent FGF23 coreceptors with opposite effects on the pathologic actions of FGF23, with soluble klotho reducing and heparin increasing FGF23-induced cardiac hypertrophy. Hence, whether heparin injections during hemodialysis in patients with extremely high serum FGF23 levels contribute to their high rates of cardiovascular events and mortality remains to be studied.