- Browse by Author
Browsing by Author "Wherrett, Diane K."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Consensus guidance for monitoring individuals with islet autoantibody-positive pre-stage 3 type 1 diabetes(Springer, 2024-09) Phillip, Moshe; Achenbach, Peter; Addala, Ananta; Albanese-O'Neill, Anastasia; Battelino, Tadej; Bell, Kirstine J.; Besser, Rachel E. J.; Bonifacio, Ezio; Colhoun, Helen M.; Couper, Jennifer J.; Craig, Maria E.; Danne, Thomas; de Beaufort, Carine; Dovc, Klemen; Driscoll, Kimberly A.; Dutta, Sanjoy; Ebekozien, Osagie; Elding Larsson, Helena; Feiten, Daniel J.; Frohnert, Brigitte I.; Gabbay, Robert A.; Gallagher, Mary P.; Greenbaum, Carla J.; Griffin, Kurt J.; Hagopian, William; Haller, Michael J.; Hendrieckx, Christel; Hendriks, Emile; Holt, Richard I. G.; Hughes, Lucille; Ismail, Heba M.; Jacobsen, Laura M.; Johnson, Suzanne B.; Kolb, Leslie E.; Kordonouri, Olga; Lange, Karin; Lash, Robert W.; Lernmark, Åke; Libman, Ingrid; Lundgren, Markus; Maahs, David M.; Marcovecchio, M. Loredana; Mathieu, Chantal; Miller, Kellee M.; O'Donnell, Holly K.; Oron, Tal; Patil, Shivajirao P.; Pop-Busui, Rodica; Rewers, Marian J.; Rich, Stephen S.; Schatz, Desmond A.; Schulman-Rosenbaum, Rifka; Simmons, Kimber M.; Sims, Emily K.; Skyler, Jay S.; Smith, Laura B.; Speake, Cate; Steck, Andrea K.; Thomas, Nicholas P. B.; Tonyushkina, Ksenia N.; Veijola, Riitta; Wentworth, John M.; Wherrett, Diane K.; Wood, Jamie R.; Ziegler, Anette-Gabriele; DiMeglio, Linda A.; Pediatrics, School of MedicineGiven the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programmes are being increasingly emphasised. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk of (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in non-specialised settings. To inform this monitoring, JDRF in conjunction with international experts and societies developed consensus guidance. Broad advice from this guidance includes the following: (1) partnerships should be fostered between endocrinologists and primary-care providers to care for people who are IAb+; (2) when people who are IAb+ are initially identified there is a need for confirmation using a second sample; (3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; (4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; (5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and (6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasises significant unmet needs for further research on early-stage type 1 diabetes to increase the rigour of future recommendations and inform clinical care.Item Correction to: Consensus guidance for monitoring individuals with islet autoantibody‑positive pre‑stage 3 type 1 diabetes(Springer, 2024) Phillip, Moshe; Achenbach, Peter; Addala, Ananta; Albanese-O'Neill, Anastasia; Battelino, Tadej; Bell, Kirstine J.; Besser, Rachel E. J.; Bonifacio, Ezio; Colhoun, Helen M.; Couper, Jennifer J.; Craig, Maria E.; Danne, Thomas; de Beaufort, Carine; Dovc, Klemen; Driscoll, Kimberly A.; Dutta, Sanjoy; Ebekozien, Osagie; Elding Larsson, Helena; Feiten, Daniel J.; Frohnert, Brigitte I.; Gabbay, Robert A.; Gallagher, Mary P.; Greenbaum, Carla J.; Griffin, Kurt J.; Hagopian, William; Haller, Michael J.; Hendrieckx, Christel; Hendriks, Emile; Holt, Richard I. G.; Hughes, Lucille; Ismail, Heba M.; Jacobsen, Laura M.; Johnson, Suzanne B.; Kolb, Leslie E.; Kordonouri, Olga; Lange, Karin; Lash, Robert W.; Lernmark, Åke; Libman, Ingrid; Lundgren, Markus; Maahs, David M.; Marcovecchio, M. Loredana; Mathieu, Chantal; Miller, Kellee M.; O'Donnell, Holly K.; Oron, Tal; Patil, Shivajirao P.; Pop-Busui, Rodica; Rewers, Marian J.; Rich, Stephen S.; Schatz, Desmond A.; Schulman-Rosenbaum, Rifka; Simmons, Kimber M.; Sims, Emily K.; Skyler, Jay S.; Smith, Laura B.; Speake, Cate; Steck, Andrea K.; Thomas, Nicholas P. B.; Tonyushkina, Ksenia N.; Veijola, Riitta; Wentworth, John M.; Wherrett, Diane K.; Wood, Jamie R.; Ziegler, Anette-Gabriele; DiMeglio, Linda A.; Pediatrics, School of MedicineItem Simplifying prediction of disease progression in pre-symptomatic type 1 diabetes using a single blood sample(SpringerLink, 2021-11) Bediaga, Naiara G.; Li-Wai-Suen, Connie S.N.; Haller, Michael J.; Gitelman, Stephen E.; Evans-Molina, Carmella; Gottlieb, Peter A.; Hippich, Markus; Ziegler, Anette-Gabriele; Lernmark, Ake; DiMeglio, Linda A.; Wherrett, Diane K.; Colman, Peter G.; Harrison, Leonard C.; Wentworth, John M.; Pediatrics, School of MedicineAims/hypothesis: Accurate prediction of disease progression in individuals with pre-symptomatic type 1 diabetes has potential to prevent ketoacidosis and accelerate development of disease-modifying therapies. Current tools for predicting risk require multiple blood samples taken during an OGTT. Our aim was to develop and validate a simpler tool based on a single blood draw. Methods: Models to predict disease progression using a single OGTT time point (0, 30, 60, 90 or 120 min) were developed using TrialNet data collected from relatives with type 1 diabetes and validated in independent populations at high genetic risk of type 1 diabetes (TrialNet, Diabetes Prevention Trial-Type 1, The Environmental Determinants of Diabetes in the Young [1]) and in a general population of Bavarian children who participated in Fr1da. Results: Cox proportional hazards models combining plasma glucose, C-peptide, sex, age, BMI, HbA1c and insulinoma antigen-2 autoantibody status predicted disease progression in all populations. In TrialNet, the AUC for receiver operating characteristic curves for models named M60, M90 and M120, based on sampling at 60, 90 and 120 min, was 0.760, 0.761 and 0.745, respectively. These were not significantly different from the AUC of 0.760 for the gold standard Diabetes Prevention Trial Risk Score, which requires five OGTT blood samples. In TEDDY, where only 120 min blood sampling had been performed, the M120 AUC was 0.865. In Fr1da, the M120 AUC of 0.742 was significantly greater than the M60 AUC of 0.615. Conclusions/interpretation: Prediction models based on a single OGTT blood draw accurately predict disease progression from stage 1 or 2 to stage 3 type 1 diabetes. The operational simplicity of M120, its validity across different at-risk populations and the requirement for 120 min sampling to stage type 1 diabetes suggest M120 could be readily applied to decrease the cost and complexity of risk stratification.Item Who Is Enrolling? The Path to Monitoring in Type 1 Diabetes TrialNet’s Pathway to Prevention(American Diabetes Association, 2019-12) Sims, Emily K.; Geyer, Susan; Bennett Johnson, Suzanne; Libman, Ingrid; Jacobsen, Laura M.; Boulware, David; Rafkin, Lisa E.; Matheson, Della; Atkinson, Mark A.; Rodriguez, Henry; Spall, Maria; Elding Larsson, Helena; Wherrett, Diane K.; Greenbaum, Carla J.; Krischer, Jeffrey; DiMeglio, Linda A.; Pediatrics, School of MedicineObjective: To better understand potential facilitators of individual engagement in type 1 diabetes natural history and prevention studies through analysis of enrollment data in the TrialNet Pathway to Prevention (PTP) study. Research design and methods: We used multivariable logistic regression models to examine continued engagement of eligible participants at two time points: 1) the return visit after screening to confirm an initial autoantibody-positive (Ab+) test result and 2) the initial oral glucose tolerance test (OGTT) for enrollment into the monitoring protocol. Results: Of 5,387 subjects who screened positive for a single autoantibody (Ab), 4,204 (78%) returned for confirmatory Ab testing. Younger age was associated with increased odds of returning for Ab confirmation (age <12 years vs. >18 years: odds ratio [OR] 2.12, P < 0.0001). Racial and ethnic minorities were less likely to return for confirmation, particularly nonwhite non-Hispanic (OR 0.50, P < 0.0001) and Hispanic (OR 0.69, P = 0.0001) relative to non-Hispanic white subjects. Of 8,234 subjects, 5,442 (66%) were identified as eligible to be enrolled in PTP OGTT monitoring. Here, younger age and identification as multiple Ab+ were associated with increased odds of returning for OGTT monitoring (age <12 years vs. >18 years: OR 1.43, P < 0.0001; multiple Ab+: OR 1.36, P < 0.0001). Parents were less likely to enroll into monitoring than other relatives (OR 0.78, P = 0.004). Site-specific factors, including site volume and U.S. site versus international site, were also associated with differences in rates of return for Ab+ confirmation and enrollment into monitoring. Conclusions: These data confirm clear differences between successfully enrolled populations and those lost to follow-up, which can serve to identify strategies to increase ongoing participation.