- Browse by Author
Browsing by Author "Wharton, Stephen B."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy(Springer, 2016-01) Kovacs, Gabor G.; Ferrer, Isidro; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J.; Crary, John F.; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M.; Ironside, James W.; Love, Seth; Mackenzie, Ian R.; Munoz, David G.; Murray, Melissa E.; Nelson, Peter T.; Takahashi, Hitoshi; Trojanowski, John Q.; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G.; Bieniek, Kevin F.; Bigio, Eileen H.; Bodi, Istvan; Dugger, Brittany N.; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M.; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Heale, Richard; Hof, Patrick R.; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A.; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J.; Mann, David M.; Matej, Radoslav; McKee, Ann C.; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J.; Murayama, Shigeo; Lee, Edward B.; Rahimi, Jasmin; Rodriguez, Roberta D.; Rozemüller, Annemieke; Schneider, Julie A.; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B.; Tolnay, Markus; Troncoso, Juan C.; Vinters, Harry V.; Weis, Serge; Wharton, Stephen B.; White III, Charles L.; Wisniewski, Thomas; Woulfe, John M.; Yamada, Masahito; Dicks, Dennis W.; Department of Pathology and Laboratory Medicine, IU School of MedicinePathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators.Item Neuropathological Correlates of Cumulative Benzodiazepine and Anticholinergic Drug Use(IOS Press, 2020-04) Richardson, Kathryn; Wharton, Stephen B.; Grossi, Carlota M.; Matthews, Fiona E.; Fox, Chris; Maidment, Ian; Loke, Yoon K.; Steel, Nicholas; Arthur, Antony; Myint, Phyo Kyaw; Boustani, Malaz; Campbell, Noll; Robinson, Louise; Brayne, Carol; Savva, George M.; Medicine, School of MedicineBackground:Benzodiazepines and anticholinergic drugs have been implicated in causing cognitive decline and potentially increasing dementia risk. However, evidence for an association with neuropathology is limited. Objective:To estimate the correlation between neuropathology at death and prior use of benzodiazepines and anticholinergic drugs. Methods:We categorized 298 brain donors from the population-based Medical Research Council Cognitive Function and Ageing Study, according to their history of benzodiazepine (including Z-drugs) or anticholinergic medication (drugs scoring 3 on the Anticholinergic Cognitive Burden scale) use. We used logistic regression to compare dichotomized neuropathological features for those with and without history of benzodiazepine and anticholinergic drug use before dementia, adjusted for confounders. Results:Forty-nine (16%) and 51 (17%) participants reported benzodiazepine and anticholinergic drug use. Alzheimer’s disease neuropathologic change was similar whether or not exposed to either drug, for example 46% and 57% had intermediate/high levels among those with and without anticholinergic drug use. Although not significant after multiple testing adjustments, we estimated an odds ratio (OR) of 0.40 (95% confidence interval [95% CI] 0.18–0.87) for anticholinergic use and cortical atrophy. For benzodiazepine use, we estimated ORs of 4.63 (1.11–19.24) and 3.30 (1.02–10.68) for neuronal loss in the nucleus basalis and substantial nigra. There was evidence of neuronal loss in the nucleus basalis with anticholinergic drug use, but the association reduced when adjusted for confounders. Conclusions:We found no evidence that benzodiazepine or anticholinergic drug use is associated with typical pathological features of Alzheimer’s disease; however, we cannot rule out effects owing to small numbers.