- Browse by Author
Browsing by Author "Whale, John W."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Population genetic analysis of the black blow fly Phormia regina (Meigen) (Diptera: Calliphoridae)(2015) Whale, John W.; Picard, Christine J.; Randall, Stephen Karl, 1953-; Roper, Randall J.The black blow fly, Phormia regina (Diptera: Calliphoridae), is a widely abundant fly autochthonous to North America. Like many other Calliphorids, P. regina plays a key role in several disciplines particularly in estimating post-mortem intervals (PMI). The aim of this work was to better understand the population genetic structure of this important ecological species using microsatellites from populations collected in the U.S. during 2008 and 2013. Additionally, it sought to determine the effect of limited genetic diversity on a quantitative trait throughout immature development; larval length, a measurement used to estimate specimen age. Observed heterozygosity was lower than expected at five of the six loci and ranged from 0.529-0.880 compared to expected heterozygosity that ranged from 0.512-0.980, this is indicative of either inbreeding or the presence of null alleles. Kinship coefficients indicate that individuals within each sample are not strongly related to one another; values for the wild-caught populations ranged from 0.033-0.171 and a high proportion of the genetic variation (30%) can be found among samples within regions. The population structure of this species does not correlate well to geography; populations are different to one another resulting from a lack of gene flow irrespective of geographic distance, thus inferring temporal distance plays a greater role on the genetic variation of P. regina. Among colonized samples, flies lost much of their genetic diversity, ≥67% of alleles per locus were lost, and population samples became increasingly more related; kinship coefficient values increased from 0.036 for the wild-caught individuals to 0.261 among the F10 specimens. Colonized larvae also became shorter in length following repeated inbreeding events, with the longest recorded specimen in F1 18.75 mm in length while the longest larva measured in F11 was 1.5 mm shorter at 17.25 mm. This could have major implications in forensic entomology, as the largest specimen is often assumed to be the oldest on the corpse and is subsequently used to estimate a postmortem interval. The reduction in length ultimately resulted in a greater proportion of individuals of a similar length; the range of data became reduced. Consequently, the major reduction in genetic diversity indicates that the loss in the spread of length distributions of the larvae may have a genetic influence or control. Therefore, this data highlights the importance when undertaking either genetic or development studies, particularly of blow flies such as Phormia regina, that collections of specimens and populations take place not only from more than one geographic location, but more importantly from more than one temporal event.Item Population Genetics of the blow fly Phormia regina (Meigen)(Office of the Vice Chancellor for Research, 2014-04-11) Whale, John W.; Picard, Christine J.Blow flies (Diptera: Calliphoridae) are a family of flies which are associated with the decomposition of organic matter, and the many species are widely distributed across the globe inhabiting almost every ecosystem and continent, with the exception being Antarctica. For many years, biologists have been interested in these metamorphic insects with much attention in recent years with their predictable life cycle and subsequent application in death investigations. Phormia regina (Meigen) is a primary colonizer of carrion and is widely distributed across the United States and can be found throughout the year. Recently, molecular techniques have been applied to a number of blow fly species, initially for identification purposes to corroborate morphological taxonomy but also as an alternative to morphology when specimens are damaged. Even more recently, population structure of these flies have been investigated, however these studies have primarily focused on pest species which infest living livestock and directly affect the agricultural economy. Here, we build upon previous analysis with AFLP markers on P. regina to determine the population structure of this integral species by using tetra-nucleotide microsatellite markers. From the recently constructed draft genome of P. regina, several thousand tetra-nucleotide (four-base repeating sequences of DNA) were identified. Due to the high A-T content of insect DNA, repeats consisting wholly of adenine and thymine bases were discarded. From the remaining tetra-repeats, 14 were chosen for initial analysis to determine their polymorphic nature; from here six were selected for genotypic analysis. More than 200 different P. regina individuals belonging to 27 populations collected from across the contiguous United States have been genotyped across these six tetra-nucleotide loci. Five loci possess ≥30 different alleles, while the sixth appears to be fairly conserved with eight different alleles. Heterozygosity exhibited between these populations is uniform (0.5-0.8) while inbred lab colonies exhibit an increase in homozygosity from their ancestral population. Further analyses are to be performed in order to determine the population structure and geography-genetic relationships of these flies.