- Browse by Author
Browsing by Author "Westendorf, Jennifer J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Gender and Geographic Origin as Determinants of Manuscript Publication Outcomes: JBMR® Bibliometric Analysis from 2017 to 2019(Wiley, 2022-08-05) Rivadeneira, Fernando; Loder, Randall T.; McGuire, Anthony C.; Chitwood, Joseph R.; Duffy, Katie; Civitelli, Roberto; Kacena, Melissa A.; Westendorf, Jennifer J.; Orthopaedic Surgery, School of MedicineThe Journal of Bone and Mineral Research (JBMR®), the flagship journal of the American Society for Bone and Mineral Research (ASBMR), enjoys a premiere position in its field and has a global reach. The journal uses a single-blind peer-review process whereby three editors are typically involved in assessing each submission for publication, in addition to external reviewers. Although emphasizing fairness, rigor, and transparency, this process is not immune to the influence of unconscious biases. The gender and geographic diversity of JBMR® authors, editors, and reviewers has increased over the last three decades, but whether such diversity has affected peer-review outcomes is unknown. We analyzed manuscript acceptance rates based on the gender and geographic origin of authors, reviewers, and Associate Editors. The analysis included 1662 original research articles submitted to JBMR® from September 2017 through December 2019. Gender was assigned using probabilities from an online tool and manually validated through internet searches. Predictor variables of manuscript outcome were determined with multivariate logistic regression analysis. The acceptance rate was highest when the first and last authors were of different genders, and lowest when both authors were men. Reviewer gender did not influence the outcome regardless of the genders of the first and last authors. Associate Editors from all geographical regions tended to select reviewers from their same region. The acceptance rate was highest when the Associate Editor was from Europe. Manuscripts with authors from North America and Australia/New Zealand had greater overall odds of acceptance than those from Europe and Asia. Manuscripts reviewed only by Editorial Board (EB) members had a lower acceptance rate than those refereed by non-EB reviewers or a mix of EB and non-EB reviewers. Overall, the geographical origin of authors, reviewers, and editors, as well as reviewers' EB membership may influence manuscript decisions. Yet, the JBMR® peer-review process remains largely free from gender bias.Item MicroRNA-101a enhances trabecular bone accrual in male mice(Springer Nature, 2022-08-03) Dudakovic, Amel; Jerez, Sofia; Deosthale, Padmini J.; Denbeigh, Janet M.; Paradise, Christopher R.; Gluscevic, Martina; Zan, Pengfei; Begun, Dana L.; Camilleri, Emily T.; Pichurin, Oksana; Khani, Farzaneh; Thaler, Roman; Lian, Jane B.; Stein, Gary S.; Westendorf, Jennifer J.; Plotkin, Lilian I.; van Wijnen, Andre J.; Anatomy, Cell Biology and Physiology, School of MedicineHigh-throughput microRNA sequencing was performed during differentiation of MC3T3-E1 osteoblasts to develop working hypotheses for specific microRNAs that control osteogenesis. The expression data show that miR-101a, which targets the mRNAs for the epigenetic enzyme Ezh2 and many other proteins, is highly upregulated during osteoblast differentiation and robustly expressed in mouse calvaria. Transient elevation of miR-101a suppresses Ezh2 levels, reduces tri-methylation of lysine 27 in histone 3 (H3K27me3; a heterochromatic mark catalyzed by Ezh2), and accelerates mineralization of MC3T3-E1 osteoblasts. We also examined skeletal phenotypes of an inducible miR-101a transgene under direct control of doxycycline administration. Experimental controls and mir-101a over-expressing mice were exposed to doxycycline in utero and postnatally (up to 8 weeks of age) to maximize penetrance of skeletal phenotypes. Male mice that over-express miR-101a have increased total body weight and longer femora. MicroCT analysis indicate that these mice have increased trabecular bone volume fraction, trabecular number and trabecular thickness with reduced trabecular spacing as compared to controls. Histomorphometric analysis demonstrates a significant reduction in osteoid volume to bone volume and osteoid surface to bone surface. Remarkably, while female mice also exhibit a significant increase in bone length, no significant changes were noted by microCT (trabecular bone parameters) and histomorphometry (osteoid parameters). Hence, miR-101a upregulation during osteoblast maturation and the concomitant reduction in Ezh2 mediated H3K27me3 levels may contribute to the enhanced trabecular bone parameters in male mice. However, the sex-specific effect of miR-101a indicates that more intricate epigenetic mechanisms mediate physiological control of bone formation and homeostasis.