- Browse by Author
Browsing by Author "West, John D."
Now showing 1 - 10 of 39
Results Per Page
Sort Options
Item Acute White-Matter Abnormalities in Sports-Related Concussion: A Diffusion Tensor Imaging Study from the NCAA-DoD CARE Consortium(Mary Ann Liebert, 2018-11-15) Mustafi, Sourajit Mitra; Harezlak, Jaroslaw; Koch, Kevin M.; Nencka, Andrew S.; Meier, Timothy B.; West, John D.; Giza, Christopher C.; DiFiori, John P.; Guskiewicz, Kevin M.; Mihalik, Jason P.; LaConte, Stephen M.; Duma, Stefan M.; Broglio, Steven P.; Saykin, Andrew J.; McCrea, Michael; McAllister, Thomas W.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicineSports-related concussion (SRC) is an important public health issue. Although standardized assessment tools are useful in the clinical management of acute concussion, the underlying pathophysiology of SRC and the time course of physiological recovery after injury remain unclear. In this study, we used diffusion tensor imaging (DTI) to detect white matter alterations in football players within 48 h after SRC. As part of the NCAA-DoD CARE Consortium study of SRC, 30 American football players diagnosed with acute concussion and 28 matched controls received clinical assessments and underwent advanced magnetic resonance imaging scans. To avoid selection bias and partial volume effects, whole-brain skeletonized white matter was examined by tract-based spatial statistics to investigate between-group differences in DTI metrics and their associations with clinical outcome measures. Mean diffusivity was significantly higher in brain white matter of concussed athletes, particularly in frontal and subfrontal long white matter tracts. In the concussed group, axial diffusivity was significantly correlated with the Brief Symptom Inventory and there was a similar trend with the symptom severity score of the Sport Concussion Assessment Tool. In addition, concussed athletes with higher fractional anisotropy performed better on the cognitive component of the Standardized Assessment of Concussion. Overall, the results of this study are consistent with the hypothesis that SRC is associated with changes in white matter tracts shortly after injury, and these differences are correlated clinically with acute symptoms and functional impairments.Item Analysis of the Inverse Association between Cancer and Alzheimer’s Disease: Results from the Alzheimer’s Disease Neuroimaging Initiative Cohort(Office of the Vice Chancellor for Research, 2014-04-11) Nudelman, Kelly N. H.; Risacher, Shannon L.; West, John D.; Nho, Kwangsik; Ramanan, Vijay K.; McDonald, Brenna C.; Shen, Li; Foroud, Tatiana M.; Schneider, Bryan P.; Saykin, Andrew J.Although a number of studies support a reciprocal inverse association between diagnoses of cancer and Alzheimer’s disease (AD), to date there has not been any systemic investigation of the neurobiological impact of or genetic risk factors underlying this effect. To facilitate this goal, this study aimed to replicate the inverse association of cancer and AD using data from the NIA Alzheimer’s Disease Neuroimaging Initiative, which includes age-matched cases and controls with information on cancer history, AD progression, neuroimaging, and genomic data. Subjects included individuals with AD (n=234), mild cognitive impairment (MCI, n=542), and healthy controls (HC, n=293). After controlling for sex, education, race/ethnicity, smoking, and apolipoprotein E (APOE) e2/3/4 allele groups, cancer history was protective against baseline AD diagnosis (p=0.042), and was associated with later age of AD onset (p=0.001). Cancer history appears to result in a cumulative protective effect; individuals with more than one cancer had a later age of AD onset compared to those with only one cancer (p=0.001). Finally, a protective effect of AD was also observed in individuals who developed incident cancer after enrolling (post-baseline visit); 20 individuals with MCI and 9 HC developed cancer, while no AD patients had subsequent cancer diagnoses (p=0.013). This supports previous research on the inverse association of cancer and AD, and importantly provides novel evidence that this effect appears to be independent of APOE, the major known genetic risk factor for AD. Future analyses will investigate the neurobiological and genetic basis of this effect.Item Association Between Anticholinergic Medication Use and Cognition, Brain Metabolism, and Brain Atrophy in Cognitively Normal Older Adults(American Medical Association, 2016-06-01) Risacher, Shannon Leigh; McDonald, Brenna C.; Tallman, Eileen F.; West, John D.; Farlow, Martin R.; Unverzagt, Fredrick W.; Gao, Sujuan; Boustani, Malaz; Crane, Paul K.; Petersen, Ronald C.; Jack, Clifford R.; Jagust, William J.; Aisen, Paul S.; Weiner, Michael W.; Saykin, Andrew J.; Department of Radiology and Imaging Sciences, School of MedicineIMPORTANCE: The use of anticholinergic (AC) medication is linked to cognitive impairment and an increased risk of dementia. To our knowledge, this is the first study to investigate the association between AC medication use and neuroimaging biomarkers of brain metabolism and atrophy as a proxy for understanding the underlying biology of the clinical effects of AC medications. OBJECTIVE: To assess the association between AC medication use and cognition, glucose metabolism, and brain atrophy in cognitively normal older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Indiana Memory and Aging Study (IMAS). DESIGN, SETTING, AND PARTICIPANTS: The ADNI and IMAS are longitudinal studies with cognitive, neuroimaging, and other data collected at regular intervals in clinical and academic research settings. For the participants in the ADNI, visits are repeated 3, 6, and 12 months after the baseline visit and then annually. For the participants in the IMAS, visits are repeated every 18 months after the baseline visit (402 cognitively normal older adults in the ADNI and 49 cognitively normal older adults in the IMAS were included in the present analysis). Participants were either taking (hereafter referred to as the AC+ participants [52 from the ADNI and 8 from the IMAS]) or not taking (hereafter referred to as the AC- participants [350 from the ADNI and 41 from the IMAS]) at least 1 medication with medium or high AC activity. Data analysis for this study was performed in November 2015. MAIN OUTCOMES AND MEASURES: Cognitive scores, mean fludeoxyglucose F 18 standardized uptake value ratio (participants from the ADNI only), and brain atrophy measures from structural magnetic resonance imaging were compared between AC+ participants and AC- participants after adjusting for potential confounders. The total AC burden score was calculated and was related to target measures. The association of AC use and longitudinal clinical decline (mean [SD] follow-up period, 32.1 [24.7] months [range, 6-108 months]) was examined using Cox regression. RESULTS: The 52 AC+ participants (mean [SD] age, 73.3 [6.6] years) from the ADNI showed lower mean scores on Weschler Memory Scale-Revised Logical Memory Immediate Recall (raw mean scores: 13.27 for AC+ participants and 14.16 for AC- participants; P = .04) and the Trail Making Test Part B (raw mean scores: 97.85 seconds for AC+ participants and 82.61 seconds for AC- participants; P = .04) and a lower executive function composite score (raw mean scores: 0.58 for AC+ participants and 0.78 for AC- participants; P = .04) than the 350 AC- participants (mean [SD] age, 73.3 [5.8] years) from the ADNI. Reduced total cortical volume and temporal lobe cortical thickness and greater lateral ventricle and inferior lateral ventricle volumes were seen in the AC+ participants relative to the AC- participants. CONCLUSIONS AND RELEVANCE: The use of AC medication was associated with increased brain atrophy and dysfunction and clinical decline. Thus, use of AC medication among older adults should likely be discouraged if alternative therapies are available.Item Association of cancer history with Alzheimer's disease onset and structural brain changes(2014-10) Nudelman, Kelly N. H.; Risacher, Shannon L.; West, John D.; McDonald, Brenna C.; Gao, Sujuan; Saykin, Andrew J.; Department of Medical and Molecular Genetics, IU School of MedicineEpidemiological studies show a reciprocal inverse association between cancer and Alzheimer's disease (AD). The common mechanistic theory for this effect posits that cells have an innate tendency toward apoptotic or survival pathways, translating to increased risk for either neurodegeneration or cancer. However, it has been shown that cancer patients experience cognitive dysfunction pre- and post-treatment as well as alterations in cerebral gray matter density (GMD) on MRI. To further investigate these issues, we analyzed the association between cancer history (CA±) and age of AD onset, and the relationship between GMD and CA± status across diagnostic groups in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort study. Data was analyzed from 1609 participants with information on baseline cancer history and AD diagnosis, age of AD onset, and baseline MRI scans. Participants were CA+ (N = 503) and CA− (N = 1106) diagnosed with AD, mild cognitive impairment (MCI), significant memory concerns (SMC), and cognitively normal older adults. As in previous studies, CA+ was inversely associated with AD at baseline (P = 0.025); interestingly, this effect appears to be driven by non-melanoma skin cancer (NMSC), the largest cancer category in this study (P = 0.001). CA+ was also associated with later age of AD onset (P < 0.001), independent of apolipoprotein E (APOE) ε4 allele status, and individuals with two prior cancers had later mean age of AD onset than those with one or no prior cancer (P < 0.001), suggesting an additive effect. Voxel-based morphometric analysis of GMD showed CA+ had lower GMD in the right superior frontal gyrus compared to CA− across diagnostic groups (Pcrit < 0.001, uncorrected); this cluster of lower GMD appeared to be driven by history of invasive cancer types, rather than skin cancer. Thus, while cancer history is associated with a measurable delay in AD onset independent of APOE ε4, the underlying mechanism does not appear to be cancer-related preservation of GMD.Item Association of plasma and cortical beta-amyloid is modulated by APOE ε4 status.(Elsevier, 2014-01) Swaminathan, Shanker; Risacher, Shannon L.; Yoder, Karmen K.; West, John D.; Shen, Li; Kim, Sungeun; Inlow, Mark; Foroud, Tatiana; Jagust, William J.; Koeppe, Robert A.; Mathis, Chester A.; Shaw, Leslie M.; Trojanowski, John Q.; Soares, Holly; Aisen, Paul S.; Petersen, Ronald C.; Weiner, Michael W.; Saykin, Andrew J.; Department of Radiology and Imaging Sciences, IU School of MedicineBackground: APOE ε4’s role as a modulator of the relationship between soluble plasma beta-amyloid (Aβ) and fibrillar brain Aβ measured by Pittsburgh Compound-B positron emission tomography ([11C]PiB PET) has not been assessed. Methods: Ninety-six Alzheimer’s Disease Neuroimaging Initiative participants with [11C]PiB scans and plasma Aβ1-40 and Aβ1-42 measurements at time of scan were included. Regional and voxel-wise analyses of [11C]PiB data were used to determine the influence of APOE ε4 on association of plasma Aβ1-40, Aβ1-42, and Aβ1-40/Aβ1-42 with [11C]PiB uptake. Results: In APOE ε4− but not ε4+ participants, positive relationships between plasma Aβ1-40/Aβ1-42 and [11C]PiB uptake were observed. Modeling the interaction of APOE and plasma Aβ1-40/Aβ1-42 improved the explained variance in [11C]PiB binding compared to using APOE and plasma Aβ1-40/Aβ1-42 as separate terms. Conclusions: The results suggest that plasma Aβ is a potential Alzheimer’s disease biomarker and highlight the importance of genetic variation in interpretation of plasma Aβ levels.Item Associations between Cortical Thickness and Metamemory in Alzheimer’s Disease(Springer, 2022) Duran, Tugce; Woo, Ellen; Otero, Diana; Risacher, Shannon L.; Stage, Eddie; Sanjay, Apoorva B.; Nho, Kwangsik; West, John D.; Phillips, Meredith L.; Goukasian, Naira; Hwang, Kristy S.; Apostolova, Liana G.; Neurology, School of MedicineMetacognitive deficits affect Alzheimer's disease (AD) patient safety and increase caregiver burden. The brain areas that support metacognition are not well understood. 112 participants from the Imaging and Genetic Biomarkers for AD (ImaGene) study underwent comprehensive cognitive testing and brain magnetic resonance imaging. A performance-prediction paradigm was used to evaluate metacognitive abilities for California Verbal Learning Test-II learning (CVLT-II 1-5) and delayed recall (CVLT-II DR); Visual Reproduction-I immediate recall (VR-I Copy) and Visual Reproduction-II delayed recall (VR-II DR); Rey-Osterrieth Complex Figure Copy (Rey-O Copy) and delayed recall (Rey-O DR). Vertex-wise multivariable regression of cortical thickness was performed using metacognitive scores as predictors while controlling for age, sex, education, and intracranial volume. Subjects who overestimated CVLT-II DR in prediction showed cortical atrophy, most pronounced in the bilateral temporal and left greater than right (L > R) frontal cortices. Overestimation of CVLT-II 1-5 prediction and DR performance in postdiction showed L > R associations with medial, inferior and lateral temporal and left posterior cingulate cortical atrophy. Overconfident prediction of VR-I Copy performance was associated with right greater than left medial, inferior and lateral temporal, lateral parietal, anterior and posterior cingulate and lateral frontal cortical atrophy. Underestimation of Rey-O Copy performance in prediction was associated with atrophy localizing to the temporal and cingulate areas, and in postdiction, with diffuse cortical atrophy. Impaired metacognition was associated to cortical atrophy. Our results indicate that poor insight into one's cognitive abilities is a pervasive neurodegenerative feature associated with AD across the cognitive spectrum.Item Associations of the Top 20 Alzheimer Disease Risk Variants With Brain Amyloidosis(American Medical Association, 2018-03-01) Apostolova, Liana G.; Risacher, Shannon L.; Duran, Tugce; Stage, Eddie C.; Goukasian, Naira; West, John D.; Do, Triet M.; Grotts, Jonathan; Wilhalme, Holly; Nho, Kwangsik; Phillips, Meredith; Elashoff, David; Saykin, Andrew J.; Neurology, School of MedicineImportance: Late-onset Alzheimer disease (AD) is highly heritable. Genome-wide association studies have identified more than 20 AD risk genes. The precise mechanism through which many of these genes are associated with AD remains unknown. Objective: To investigate the association of the top 20 AD risk variants with brain amyloidosis. Design, Setting, and Participants: This study analyzed the genetic and florbetapir F 18 data from 322 cognitively normal control individuals, 496 individuals with mild cognitive impairment, and 159 individuals with AD dementia who had genome-wide association studies and 18F-florbetapir positron emission tomographic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a prospective, observational, multisite tertiary center clinical and biomarker study. This ongoing study began in 2005. Main Outcomes and Measures: The study tested the association of AD risk allele carrier status (exposure) with florbetapir mean standard uptake value ratio (outcome) using stepwise multivariable linear regression while controlling for age, sex, and apolipoprotein E ε4 genotype. The study also reports on an exploratory 3-dimensional stepwise regression model using an unbiased voxelwise approach in Statistical Parametric Mapping 8 with cluster and significance thresholds at 50 voxels and uncorrected P < .01. Results: This study included 977 participants (mean [SD] age, 74 [7.5] years; 535 [54.8%] male and 442 [45.2%] female) from the ADNI-1, ADNI-2, and ADNI-Grand Opportunity. The adenosine triphosphate-binding cassette subfamily A member 7 (ABCA7) gene had the strongest association with amyloid deposition (χ2 = 8.38, false discovery rate-corrected P < .001), after apolioprotein E ε4. Significant associations were found between ABCA7 in the asymptomatic and early symptomatic disease stages, suggesting an association with rapid amyloid accumulation. The fermitin family homolog 2 (FERMT2) gene had a stage-dependent association with brain amyloidosis (FERMT2 × diagnosis χ2 = 3.53, false discovery rate-corrected P = .05), which was most pronounced in the mild cognitive impairment stage. Conclusions and Relevance: This study found an association of several AD risk variants with brain amyloidosis. The data also suggest that AD genes might differentially regulate AD pathologic findings across the disease stages.Item Brain explorer for connectomic analysis(Springer, 2017-08-23) Li, Huang; Fang, Shiaofen; Contreras, Joey A.; West, John D.; Risacher, Shannon L.; Wang, Yang; Sporns, Olaf; Saykin, Andrew J.; Goñi, Joaquín; Shen, Li; Radiology and Imaging Sciences, School of MedicineVisualization plays a vital role in the analysis of multimodal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional, and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomical structure. In this paper, new surface texture techniques are developed to map non-spatial attributes onto both 3D brain surfaces and a planar volume map which is generated by the proposed volume rendering technique, spherical volume rendering. Two types of non-spatial information are represented: (1) time series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image-based phenotypic biomarkers for brain diseases.Item Cerebral Blood Flow in the Salience Network of Individuals with Alcohol Use Disorder(Oxford University Press, 2022) Butcher, Tarah J.; Chumin, Evgeny J.; West, John D.; Dzemidzic, Mario; Yoder, Karmen K.; Radiology and Imaging Sciences, School of MedicineAims: Magnetic resonance imaging (MRI) studies have identified structural and functional differences in salience network nodes of individuals with alcohol use disorders (AUDs) after chronic exposure to alcohol. However, no studies have investigated cerebral blood flow (CBF) in nontreatment-seeking (NTS) individuals with AUD. Methods: In this work, we sought to quantify putative CBF deficits in NTS individuals relative to social drinking (SD) controls and determine if CBF in the salience network is associated with AUD severity. Fifteen NTS (36.5 ± 11.2 years old, 30.0 ± 22.7 drinks/week) and 22 SD (35.6 ± 11.9 years old, 9.1 ± 5.7 drinks/week) underwent pseudocontinuous arterial spin labeling MRI. Results: Compared with social drinkers, NTS individuals had significantly lower CBF in the right and left dorsal anterior insula, and the left ventral anterior and posterior insula. The Alcohol Use Disorder Identification Test (AUDIT) score showed a significant negative relationship with CBF in the bilateral caudal anterior cingulate cortex. In addition, a significant negative correlation was present between number of standard drinks consumed per week and the left frontal opercular CBF. Conclusion: These results provide evidence that insular CBF is negatively associated with heavy drinking, and that severity of alcohol use is related to CBF deficits in key nodes of the salience network. Longitudinal data are needed to understand if disruptions of CBF in the insula and the salience network are a predisposition for or a consequence of chronic AUD.Item Cerebral Perfusion and Gray Matter Changes Associated With Chemotherapy-Induced Peripheral Neuropathy(American Society of Clinical Oncology, 2016-03-01) Nudelman, Kelly N.H.; McDonald, Brenna C.; Wang, Yang; Smith, Dori J.; West, John D.; O'Neill, Darren P.; Zanville, Noah R.; Champion, Victoria L.; Schneider, Bryan P.; Saykin, Andrew J.; IU School of NursingPURPOSE: To investigate the longitudinal relationship between chemotherapy-induced peripheral neuropathy (CIPN) symptoms (sx) and brain perfusion changes in patients with breast cancer. Interaction of CIPN-sx perfusion effects with known chemotherapy-associated gray matter density decrease was also assessed to elucidate the relationship between CIPN and previously reported cancer treatment-related brain structural changes. METHODS: Patients with breast cancer treated with (n = 24) or without (n = 23) chemotherapy underwent clinical examination and brain magnetic resonance imaging at the following three time points: before treatment (baseline), 1 month after treatment completion, and 1 year after the 1-month assessment. CIPN-sx were evaluated with the self-reported Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity four-item sensory-specific scale. Perfusion and gray matter density were assessed using voxel-based pulsed arterial spin labeling and morphometric analyses and tested for association with CIPN-sx in the patients who received chemotherapy. RESULTS: Patients who received chemotherapy reported significantly increased CIPN-sx from baseline to 1 month, with partial recovery by 1 year (P < .001). CIPN-sx increase from baseline to 1 month was significantly greater for patients who received chemotherapy compared with those who did not (P = .001). At 1 month, neuroimaging showed that for the group that received chemotherapy, CIPN-sx were positively associated with cerebral perfusion in the right superior frontal gyrus and cingulate gyrus, regions associated with pain processing (P < .001). Longitudinal magnetic resonance imaging analysis in the group receiving chemotherapy indicated that CIPN-sx and associated perfusion changes from baseline to 1 month were also positively correlated with gray matter density change (P < .005). CONCLUSION: Peripheral neuropathy symptoms after systemic chemotherapy for breast cancer are associated with changes in cerebral perfusion and gray matter. The specific mechanisms warrant further investigation given the potential diagnostic and therapeutic implications.