- Browse by Author
Browsing by Author "Wells, Ellen M."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item The association of bone, fingernail and blood manganese with cognitive and olfactory function in Chinese workers(Elsevier, 2019-05-20) Rolle-McFarland, Danelle; Liu, Yingzi; Mostafaei, Farshad; Zauber, S. Elizabeth; Zhou, Yuanzhong; Li, Yan; Fan, Quiyan; Zheng, Wei; Nie, Linda H.; Wells, Ellen M.; Neurology, School of MedicineOccupational manganese (Mn) exposure has been associated with cognitive and olfactory dysfunction; however, few studies have incorporated cumulative biomarkers of Mn exposure such as bone Mn (BnMn). Our goal was to assess the cross-sectional association between BnMn, blood Mn (BMn), and fingernail Mn (FMn) with cognitive and olfactory function among Mn-exposed workers. A transportable in vivo neutron activation analysis (IVNAA) system was designed and utilized to assess BnMn among 60 Chinese workers. BMn and FMn were measured using inductively coupled plasma mass spectrometry. Cognitive and olfactory function was assessed using Animal and Fruit Naming tests, World Health Organization/University of California-Los Angeles Auditory Verbal Learning Test (AVLT) and the University of Pennsylvania Smell Identification Test (UPSIT). Additional data were obtained via questionnaire. Regression models adjusted for age, education, factory of employment, and smoking status (UPSIT only), were used to assess the relationship between Mn biomarkers and test scores. In adjusted models, increasing BnMn was significantly associated with decreased performance on average AVLT scores [β (95% confidence interval (CI)) = -0.65 (-1.21, -0.09)] and Animal Naming scores [β (95% CI) = -1.54 (-3.00, -0.07)]. Increasing FMn was significantly associated with reduced performance measured by the average AVLT [β (95% CI) = -0.35 (-0.70, -0.006)] and the difference in AVLT scores [β (95% CI) = -0.40 (-0.77, -0.03)]. BMn was not significantly associated with any test scores; no significant associations were observed with Fruit Naming or UPSIT tests. BnMn and FMn, but not BMn, are associated with cognitive function in Mn-exposed workers. None of theItem Reversibility of Neuroimaging Markers Influenced by Lifetime Occupational Manganese Exposure(Oxford Academic, 2019-11) Edmondson, David A.; Ma, Ruoyun E.; Yeh, Chien-Lin; Ward, Eric; Snyder, Sandy; Azizi, Elham; Zauber, S Elizabeth; Wells, Ellen M.; Dydak, Ulrike; Radiology and Imaging Sciences, School of MedicineManganese (Mn) is a neurotoxicant that many workers are exposed to daily. There is limited knowledge about how changes in exposure levels impact measures in magnetic resonance imaging (MRI). We hypothesized that changes in Mn exposure would be reflected by changes in the MRI relaxation rate R1 and thalamic γ-aminobutyric acid (GABAThal). As part of a prospective cohort study, 17 welders were recruited and imaged on 2 separate occasions approximately 2 years apart. MRI relaxometry was used to assess changes of Mn accumulation in the brain. Additionally, GABA was measured using magnetic resonance spectroscopy in the thalamic and striatal regions of the brain. Air Mn exposure ([Mn]Air) and cumulative exposure indexes of Mn (Mn-CEI) for the past 3 months (Mn-CEI3M), past year (Mn-CEI12M), and lifetime (Mn-CEILife) were calculated using personal air sampling and a comprehensive work history, whereas toenails were collected for analysis of internal Mn body burden. Finally, welders’ motor function was examined using the Unified Parkinson’s Disease Rating Scale (UPDRS). Median exposure decreased for all exposure measures between the first and second scan. ΔGABAThal was significantly correlated with ΔMn-CEI3M (ρ = 0.66, adjusted p = .02), ΔMn-CEI12M (ρ = 0.70, adjusted p = .006), and Δ[Mn]Air (ρ = 0.77, adjusted p = .002). ΔGABAThal significantly decreased linearly with ΔMn-CEI3M (quantile regression, β = 15.22, p = .02) as well as Δ[Mn]Air (β = 1.27, p = .04). Finally, Mn-CEILife interacted with Δ[Mn]Air in the substantia nigra where higher Mn-CEILife lessened the ΔR1 per Δ[Mn]Air (F-test, p = .005). Although R1 and GABA changed with Mn exposure, UPDRS was unaffected. In conclusion, our study shows that effects from changes in Mn exposure are reflected in thalamic GABA levels and brain Mn levels, as measured by R1, in most brain regions.Item The association of bone and blood manganese with motor function in Chinese workers(Elsevier, 2022) Rolle-McFarland, Danelle; Liu, Yingzi; Mostafaei, Farshad; Zauber, S. Elizabeth; Zhou, Yuanzhong; Li, Yan; Fan, Quiyan; Zheng, Wei; Nie, Linda H.; Wells, Ellen M.; Neurology, School of MedicineManganese (Mn) is an essential element. However, Mn overexposure is associated with motor dysfunction. This cross-sectional study assessed the association between bone Mn (BnMn) and whole blood Mn (BMn) with motor function in 59 Chinese workers. BnMn and BMn were measured using a transportable in vivo neutron activation analysis system and inductively coupled plasma mass spectrometry, respectively. Motor function (manual coordination, postural sway, postural hand tremor, and fine motor function) was assessed using the Coordination Ability Test System (CATSYS) and the Purdue Pegboard. Relationships between Mn biomarkers and motor test scores were analyzed with linear regression models adjusted for age, education, current employment, and current alcohol consumption. BMn was significantly inversely associated with hand tremor intensity (dominant hand (β=-0.04, 95 % confidence interval (CI):-0.07, -0.01; non-dominant hand β=-0.05, 95 % CI:-0.08, -0.01) hand tremor center frequency (non-dominant hand β=-1.61, 95 % CI:-3.03, -0.19) and positively associated with the Purdue Pegboard Assembly Score (β = 4.58, 95 % CI:1.08, 8.07). BnMn was significantly inversely associated with finger-tapping performance (non-dominant hand β=-0.02, 95 % CI:-0.04,-0.004), mean sway (eyes closed and foam β=-0.68, 95 % CI:-1.31,-0.04), and positively associated with hand tremor center frequency (dominant hand, β = 0.40, 95 % CI:0.002, 0.80). These results suggest BMn is related to better postural hand tremor and fine motor control and BnMn is related to worse motor coordination and postural hand tremor but better (i.e., less) postural sway. The unexpected positive results might be explained by choice of biomarker or confounding by work-related motor activities. Larger, longitudinal studies in this area are recommended.Item Whole-brain mapping of increased manganese levels in welders and its association with exposure and motor function(Elsevier, 2024) Monsivais, Humberto; Yeh, Chien-Lin; Edmondson, Alex; Harold, Roslyn; Snyder, Sandy; Wells, Ellen M.; Schmidt-Wilcke, Tobias; Foti, Dan; Zauber, S. Elizabeth; Dydak, Ulrike; Neurology, School of MedicineAlthough manganese (Mn) is a trace metal essential for humans, chronic exposure to Mn can cause accumulation of this metal ion in the brain leading to an increased risk of neurological and neurobehavioral health effects. This is a concern for welders exposed to Mn through welding fumes. While brain Mn accumulation in occupational settings has mostly been reported in the basal ganglia, several imaging studies also revealed elevated Mn in other brain areas. Since Mn functions as a magnetic resonance imaging (MRI) T1 contrast agent, we developed a whole-brain MRI approach to map in vivo Mn deposition differences in the brains of non-exposed factory controls and exposed welders. This is a cross-sectional analysis of 23 non-exposed factory controls and 36 exposed full-time welders from the same truck manufacturer. We collected high-resolution 3D MRIs of brain anatomy and R1 relaxation maps to identify regional differences using voxel-based quantification (VBQ) and statistical parametric mapping. Furthermore, we investigated the associations between excess Mn deposition and neuropsychological and motor test performance. Our results indicate that: (1) Using whole-brain MRI relaxometry methods we can generate excess Mn deposition maps in vivo, (2) excess Mn accumulation due to occupational exposure occurs beyond the basal ganglia in cortical areas associated with motor and cognitive functions, (3) Mn likely diffuses along white matter tracts in the brain, and (4) Mn deposition in specific brain regions is associated with exposure (cerebellum and frontal cortex) and motor metrics (cerebellum and hippocampus).