- Browse by Author
Browsing by Author "Welch, Robert D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Blood Biomarkers for Detection of Brain Injury in COVID-19 Patients(Mary Ann Liebert, 2021) DeKosky, Steven T.; Kochanek, Patrick M.; Valadka, Alex B.; Clark, Robert S. B.; Chou, Sherry H. Y.; Au, Alicia K.; Horvat, Christopher; Jha, Ruchira M.; Mannix, Rebekah; Wisniewski, Stephen R.; Wintermark, Max; Rowell, Susan E.; Welch, Robert D.; Lewis, Lawrence; House, Stacey; Tanzi, Rudolph E.; Smith, Darci R.; Vittor, Amy Y.; Denslow, Nancy D.; Davis, Michael D.; Glushakova, Olena Y.; Hayes, Ronald L.; Pediatrics, School of MedicineThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus attacks multiple organs of coronavirus disease 2019 (COVID-19) patients, including the brain. There are worldwide descriptions of neurological deficits in COVID-19 patients. Central nervous system (CNS) symptoms can be present early in the course of the disease. As many as 55% of hospitalized COVID-19 patients have been reported to have neurological disturbances three months after infection by SARS-CoV-2. The mutability of the SARS-COV-2 virus and its potential to directly affect the CNS highlight the urgency of developing technology to diagnose, manage, and treat brain injury in COVID-19 patients. The pathobiology of CNS infection by SARS-CoV-2 and the associated neurological sequelae of this infection remain poorly understood. In this review, we outline the rationale for the use of blood biomarkers (BBs) for diagnosis of brain injury in COVID-19 patients, the research needed to incorporate their use into clinical practice, and the improvements in patient management and outcomes that can result. BBs of brain injury could potentially provide tools for detection of brain injury in COVID-19 patients. Elevations of BBs have been reported in cerebrospinal fluid (CSF) and blood of COVID-19 patients. BB proteins have been analyzed in CSF to detect CNS involvement in patients with infectious diseases, including human immunodeficiency virus and tuberculous meningitis. BBs are approved by the U.S. Food and Drug Administration for diagnosis of mild versus moderate traumatic brain injury and have identified brain injury after stroke, cardiac arrest, hypoxia, and epilepsy. BBs, integrated with other diagnostic tools, could enhance understanding of viral mechanisms of brain injury, predict severity of neurological deficits, guide triage of patients and assignment to appropriate medical pathways, and assess efficacy of therapeutic interventions in COVID-19 patients.Item Increasing illness severity is associated with global myocardial dysfunction in the first 24 hours of sepsis admission(Springer, 2022-07-28) Ehrman, Robert R.; Bredell, Bryce X.; Harrison, Nicholas E.; Favot, Mark J.; Haber, Brian D.; Welch, Robert D.; Levy, Philip D.; Sherwin, Robert L.; Emergency Medicine, School of MedicineBackground: Septic cardiomyopathy was recognized more than 30 years ago, but the early phase remains uncharacterized as no existing studies captured patients at the time of Emergency Department (ED) presentation, prior to resuscitation. Therapeutic interventions alter cardiac function, thereby distorting the relationship with disease severity and outcomes. The goal of this study was to assess the impact of illness severity on cardiac function during the first 24 h of sepsis admission. Methods: This was a pre-planned secondary analysis of a prospective observational study of adults presenting to the ED with suspected sepsis (treatment for infection plus either lactate > 2 mmol/liter or systolic blood pressure < 90 mm/Hg) who received < 1L IV fluid before enrollment. Patients had 3 echocardiograms performed (presentation, 3, and 24 h). The primary outcome was the effect of increasing sepsis illness severity, defined by ED Sequential Organ Failure Assessment (SOFA) score, on parameters of cardiac function, assessed using linear mixed-effects models. The secondary goal was to determine whether cardiac function differed between survivors and non-survivors, also using mixed-effects models. Results: We enrolled 73 patients with a mean age of 60 (SD 16.1) years and in-hospital mortality of 23%. For the primary analysis, we found that increasing ED SOFA score was associated with worse cardiac function over the first 24 h across all assessed parameters of left-ventricular systolic and diastolic function as well as right-ventricular systolic function. While baseline strain and E/e' were better in survivors, in the mixed models analysis, the trajectory of Global Longitudinal Strain and septal E/e' over the first 24 h of illness differed between survivors and non-survivors, with improved function at 24 h in non-survivors. Conclusions: In the first study to capture patients prior to the initiation of resuscitation, we found a direct relationship between sepsis severity and global myocardial dysfunction. Future studies are needed to confirm these results, to identify myocardial depressants, and to investigate the link with adverse outcomes so that therapeutic interventions can be developed.