- Browse by Author
Browsing by Author "Wek, Sheree A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Aminoacylation-defective bi-allelic mutations in human EPRS1 associated with psychomotor developmental delay, epilepsy, and deafness(Wiley, 2023) Jin, Danni; Wek, Sheree A.; Cordova, Ricardo A.; Wek, Ronald C.; Lacombe, Didier; Michaud, Vincent; Musier-Forsyth, Karin; Biochemistry and Molecular Biology, School of MedicineAminoacyl-tRNA synthetases are enzymes that ensure accurate protein synthesis. Variants of the dual-functional cytoplasmic human glutamyl-prolyl-tRNA synthetase, EPRS1, have been associated with leukodystrophy, diabetes and bone disease. Here, we report compound heterozygous variants in EPRS1 in a 4-year-old female patient presenting with psychomotor developmental delay, seizures and deafness. Functional studies of these two missense mutations support major defects in enzymatic function in vitro and contributed to confirmation of the diagnosis.Item Crystal structures of GCN2 protein kinase C-terminal domains suggest regulatory differences in yeast and mammals(ASBMB, 2014-04-09) He, Hongzhen; Singh, Isha; Wek, Sheree A.; Dey, Souvik; Baird, Thomas D.; Wek, Ronald C.; Georgiadis, Millie M.; Department of Biochemistry & Molecular Biology, IU School of MedicineIn response to amino acid starvation, GCN2 phosphorylation of eIF2 leads to repression of general translation and initiation of gene reprogramming that facilitates adaptation to nutrient stress. GCN2 is a multidomain protein with key regulatory domains that directly monitor uncharged tRNAs which accumulate during nutrient limitation, leading to activation of this eIF2 kinase and translational control. A critical feature of regulation of this stress response kinase is its C-terminal domain (CTD). Here, we present high resolution crystal structures of murine and yeast CTDs, which guide a functional analysis of the mammalian GCN2. Despite low sequence identity, both yeast and mammalian CTDs share a core subunit structure and an unusual interdigitated dimeric form, albeit with significant differences. Disruption of the dimeric form of murine CTD led to loss of translational control by GCN2, suggesting that dimerization is critical for function as is true for yeast GCN2. However, although both CTDs bind single- and double-stranded RNA, murine GCN2 does not appear to stably associate with the ribosome, whereas yeast GCN2 does. This finding suggests that there are key regulatory differences between yeast and mammalian CTDs, which is consistent with structural differencesItem Disease-associated mutations in a bifunctional aminoacyl-tRNA synthetase gene elicit the integrated stress response(American Society for Biochemistry and Molecular Biology, 2021-10) Jin, Danni; Wek, Sheree A.; Kudlapur, Nathan T.; Cantara, William A.; Bakhtina, Marina; Wek, Ronald C.; Musier-Forsyth, Karin; Biochemistry and Molecular Biology, School of MedicineAminoacyl-tRNA synthetases (ARSs) catalyze the charging of specific amino acids onto cognate tRNAs, an essential process for protein synthesis. Mutations in ARSs are frequently associated with a variety of human diseases. The human EPRS1 gene encodes a bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) with two catalytic cores and appended domains that contribute to nontranslational functions. In this study, we report compound heterozygous mutations in EPRS1, which lead to amino acid substitutions P14R and E205G in two patients with diabetes and bone diseases. While neither mutation affects tRNA binding or association of EPRS with the multisynthetase complex, E205G in the glutamyl-tRNA synthetase (ERS) region of EPRS is defective in amino acid activation and tRNAGlu charging. The P14R mutation induces a conformational change and altered tRNA charging kinetics in vitro. We propose that the altered catalytic activity and conformational changes in the EPRS variants sensitize patient cells to stress, triggering an increased integrated stress response (ISR) that diminishes cell viability. Indeed, patient-derived cells expressing the compound heterozygous EPRS show heightened induction of the ISR, suggestive of disruptions in protein homeostasis. These results have important implications for understanding ARS-associated human disease mechanisms and development of new therapeutics.Item THE EIF2 KINASE PERK AND THE INTEGRATED STRESS RESPONSE FACILITATE ACTIVATION OF ATF6 DURING ENDOPLASMIC RETICULUM STRESS(Office of the Vice Chancellor for Research, 2012-04-13) Teske, Brian F.; Wek, Ronald C.; Wek, Sheree A.; Bunpo, Piyawan; Cundiff, Judy K.; McClintick, Jeanette N.; Anthony, Tracy G.; Wek, Ronald C.Disruptions of the endoplasmic reticulum (ER) that perturb protein folding cause ER stress and elicit an unfolded protein response (UPR) that involves changes in gene expression aimed at expanding the ER protein processing capacity and alleviating cellular injury. Three ER stress sensors PERK, ATF6, and IRE1 implement the UPR. Mutations of these ER stress sensors have been linked to diabetes, cancer and neurodegenerative diseases. Consequently, understanding the regulation of these three pathways has substantial therapeutic potential for development of biomarkers and pharmaceuticals for management of these conditions. PERK phosphorylation of eIF2 during ER stress represses protein synthesis, which prevents further influx of ER client proteins. PERK phosphorylation of eIF2 (eIF2~P) also induces preferential translation of ATF4, a transcription activator of the UPR. In this study we show that the PERK/eIF2~P/ATF4 pathway is required not only for translational control, but also activation of ATF6 and its target genes. The PERK pathway facilitates both the synthesis of ATF6 and trafficking of ATF6 from the ER to the Golgi for intramembrane proteolysis and activation of ATF6. As a consequence, liver-specific depletion of PERK significantly reduces both the translational and transcriptional phases of the UPR, leading to reduced protein chaperone expression, disruptions of lipid metabolism, and enhanced apoptosis. These findings show that the regulatory networks of the UPR are fully integrated, and helps explain the diverse biological defects associated with loss of PERK.