- Browse by Author
Browsing by Author "Weiss, Robert B."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts(Springer, 2016-03) Schwantes-An, Tae-Hwi; Zhang, Juan; Chen, Li-Shiun; Hartz, Sarah M.; Culverhouse, Robert C.; Chen, Xiangning; Coon, Hilary; Frank, Josef; Kamens, Helen M.; Konte, Bettina; Kovanen, Leena; Latvala, Antti; Legrand, Lisa N.; Maher, Brion S.; Melroy, Whitney E.; Nelson, Elliot C.; Reid, Mark W.; Robinson, Jason D.; Shen, Pei-Hong; Yang, Bao-Zhu; Andrews, Judy A.; Aveyard, Paul; Beltcheva, Olga; Brown, Sandra A.; Cannon, Dale S.; Cichon, Sven; Corley, Robin P.; Dahmen, Norbert; Degenhardt, Louisa; Foroud, Tatiana; Gaebel, Wolfgang; Giegling, Ina; Glatt, Stephen J.; Grucza, Richard A.; Hardin, Jill; Hartmann, Annette M.; Heath, Andrew C.; Herms, Stefan; Hodgkinson, Colin A.; Hoffmann, Per; Hops, Hyman; Huizinga, David; Ising, Marcus; Johnson, Eric O.; Johnstone, Elaine; Kaneva, Radka P.; Kendler, Kenneth S.; Kiefer, Falk; Kranzler, Henry R.; Krauter, Ken S.; Levran, Orna; Lucae, Susanne; Lynskey, Michael T.; Maier, Wolfgang; Mann, Karl; Martin, Nicholas G.; Mattheisen, Manuel; Montgomery, Grant W.; Müller-Myhsok, Bertram; Murphy, Michael F.; Neale, Michael C.; Nikolov, Momchil A.; Nishita, Denise; Nöthen, Markus M.; Nurnberger, John; Partonen, Timo; Pergadia, Michele L.; Reynolds, Maureen; Ridinger, Monika; Rose, Richard J.; Rouvinen-Lagerström, Noora; Scherbaum, Norbert; Schmäl, Christine; Soyka, Michael; Stallings, Michael C.; Steffens, Michael; Treutlein, Jens; Tsuang, Ming; Wallace, Tamara L.; Wodarz, Norbert; Yuferov, Vadim; Zill, Peter; Bergen, Andrew W.; Chen, Jingchun; Cinciripini, Paul M.; Edenberg, Howard J.; Ehringer, Marissa A.; Ferrell, Robert E.; Gelernter, Joel; Goldman, David; Hewitt, John K.; Hopfer, Christian J.; Iacono, William G.; Kaprio, Jaakko; Kreek, Mary Jeanne; Kremensky, Ivo M.; Madden, Pamela A.F.; McGue, Matt; Munafò, Marcus R.; Philibert, Robert A.; Rietschel, Marcella; Roy, Alec; Rujescu, Dan; Saarikoski, Sirkku T.; Swan, Gary E.; Todorov, Alexandre A.; Vanyukov, Michael M.; Weiss, Robert B.; Bierut, Laura J.; Saccone, Nancy L.; Department of Medical & Molecular Genetics, IU School of MedicineThe mu1 opioid receptor gene, OPRM1, has long been a high-priority candidate for human genetic studies of addiction. Because of its potential functional significance, the non-synonymous variant rs1799971 (A118G, Asn40Asp) in OPRM1 has been extensively studied, yet its role in addiction has remained unclear, with conflicting association findings. To resolve the question of what effect, if any, rs1799971 has on substance dependence risk, we conducted collaborative meta-analyses of 25 datasets with over 28,000 European-ancestry subjects. We investigated non-specific risk for "general" substance dependence, comparing cases dependent on any substance to controls who were non-dependent on all assessed substances. We also examined five specific substance dependence diagnoses: DSM-IV alcohol, opioid, cannabis, and cocaine dependence, and nicotine dependence defined by the proxy of heavy/light smoking (cigarettes-per-day >20 vs. ≤ 10). The G allele showed a modest protective effect on general substance dependence (OR = 0.90, 95% C.I. [0.83-0.97], p value = 0.0095, N = 16,908). We observed similar effects for each individual substance, although these were not statistically significant, likely because of reduced sample sizes. We conclude that rs1799971 contributes to mechanisms of addiction liability that are shared across different addictive substances. This project highlights the benefits of examining addictive behaviors collectively and the power of collaborative data sharing and meta-analyses.Item A human polymorphism affects NEDD4L subcellular targeting by leading to two isoforms that contain or lack a C2 domain(2009) Garrone, Nicholas F.; Blazer-Yost, Bonnie; Weiss, Robert B.; Lalouel, Jean-Marc; Rohrwasser, AndreasBACKGROUND: Ubiquitination serves multiple cellular functions, including proteasomal degradation and the control of stability, function, and intracellular localization of a wide variety of proteins. NEDD4L is a member of the HECT class of E3 ubiquitin ligases. A defining feature of NEDD4L protein isoforms is the presence or absence of an amino-terminal C2 domain, a class of subcellular, calcium-dependent targeting domains. We previously identified a common variant in human NEDD4L that generates isoforms that contain or lack a C2 domain. RESULTS: To address the potential functional significance of the NEDD4L common variant on NEDD4L subcellular localization, NEDD4L isoforms that either contained or lacked a C2 domain were tagged with enhanced green fluorescent protein, transfected into Xenopus laevis kidney epithelial cells, and imaged by performing confocal microscopy on live cells. We report that the presence or absence of this C2 domain exerts differential effects on the subcellular distribution of NEDD4L, the ability of C2 containing and lacking NEDD4L isoforms to mobilize in response to a calcium stimulus, and the intracellular transport of subunits of the NEDD4L substrate, ENaC. Furthermore, the ability of the C2-containing isoform to influence beta-ENaC mobilization from intracellular pools involves the NEDD4L active site for ubiquitination. We propose a model to account for the potential impact of this common genetic variant on protein function at the cellular level. CONCLUSION: NEDD4L isoforms that contain or lack a C2 domain target different intracellular locations. Additionally, whereas the C2-containing NEDD4L isoform is capable of shuttling between the plasma membrane and intracellular compartments in response to calcium stimulus the C2-lacking isoform can not. The C2-containing isoform differentially affects the mobilization of ENaC subunits from intracellular pools and this trafficking step requires NEDD4L ubiquitin ligase activity. This observation suggests a new mechanism for the requirement for the PY motif in cAMP-mediated exocytosis of ENaC. We have elucidated how a common genetic variant can underlie significant functional diversity in NEDD4L at the cellular level. We propose a model that describes how that functional variation may influence blood pressure. Moreover, our observations regarding differential function of the NEDD4L isoforms may impact other aspects of physiology that involve this ubiquitin ligase.