- Browse by Author
Browsing by Author "Weir, Natalie L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Longitudinal Plasma Metabolomics Profile in Pregnancy—A Study in an Ethnically Diverse U.S. Pregnancy Cohort(MDPI, 2021-09-01) Mitro, Susanna D.; Wu, Jing; Rahman, Mohammad L.; Cao, Yaqi; Zhu, Yeyi; Chen, Zhen; Chen, Liwei; Li, Mengying; Hinkle, Stefanie N.; Bremer, Andrew A.; Weir, Natalie L.; Tsai, Michael Y.; Song, Yiqing; Grantz, Katherine L.; Gelaye, Bizu; Zhang, Cuilin; Epidemiology, School of Public HealthAmino acids, fatty acids, and acylcarnitine metabolites play a pivotal role in maternal and fetal health, but profiles of these metabolites over pregnancy are not completely established. We described longitudinal trajectories of targeted amino acids, fatty acids, and acylcarnitines in pregnancy. We quantified 102 metabolites and combinations (37 fatty acids, 37 amino acids, and 28 acylcarnitines) in plasma samples from pregnant women in the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies-Singletons cohort (n = 214 women at 10-14 and 15-26 weeks, 107 at 26-31 weeks, and 103 at 33-39 weeks). We used linear mixed models to estimate metabolite trajectories and examined variation by body mass index (BMI), race/ethnicity, and fetal sex. After excluding largely undetected metabolites, we analyzed 77 metabolites and combinations. Levels of 13 of 15 acylcarnitines, 7 of 25 amino acids, and 18 of 37 fatty acids significantly declined over gestation, while 8 of 25 amino acids and 10 of 37 fatty acids significantly increased. Several trajectories appeared to differ by BMI, race/ethnicity, and fetal sex although no tests for interactions remained significant after multiple testing correction. Future studies merit longitudinal measurements to capture metabolite changes in pregnancy, and larger samples to examine modifying effects of maternal and fetal characteristics.Item Plasma Acylcarnitines during Pregnancy and Neonatal Anthropometry: A Longitudinal Study in a Multiracial Cohort(MDPI, 2021-12-17) Song, Yiqing; Lyu, Chen; Li, Ming; Rahman, Mohammad L.; Chen, Zhen; Zhu, Yeyi; Hinkle, Stefanie N.; Chen, Liwei; Mitro, Susanna D.; Li, Ling-Jun; Weir, Natalie L.; Tsai, Michael Y.; Zhang, Cuilin; Epidemiology, School of Public HealthAs surrogate readouts reflecting mitochondrial dysfunction, elevated levels of plasma acylcarnitines have been associated with cardiometabolic disorders, such as obesity, gestational diabetes, and type 2 diabetes. This study aimed to examine prospective associations of acylcarnitine profiles across gestation with neonatal anthropometry, including birthweight, birthweight z score, body length, sum of skinfolds, and sum of body circumferences. We quantified 28 acylcarnitines using electrospray ionization tandem mass spectrometry in plasma collected at gestational weeks 10-14, 15-26, 23-31, and 33-39 among 321 pregnant women from the National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies-Singletons. A latent-class trajectory approach was applied to identify trajectories of acylcarnitines across gestation. We examined the associations of individual acylcarnitines and distinct trajectory groups with neonatal anthropometry using weighted generalized linear models adjusting for maternal age, race/ethnicity, education, parity, gestational age at blood collection, and pre-pregnancy body mass index (BMI). We identified three distinct trajectory groups in C2, C3, and C4 and two trajectory groups in C5, C10, C5-DC, C8:1, C10:1, and C12, respectively. Women with nonlinear decreasing C12 levels across gestation (5.7%) had offspring with significantly lower birthweight (-475 g; 95% CI, -942, -6.79), birthweight z score (-0.39, -0.71, -0.06), and birth length (-1.38 cm, -2.49, -0.27) than those with persistently stable C12 levels (94.3%) (all nominal p value < 0.05). Women with consistently higher levels of C10 (6.1%) had offspring with thicker sum of skinfolds (4.91 mm, 0.85, 8.98) than did women with lower levels (93.9%) during pregnancy, whereas women with lower C10:1 levels (12.6%) had offspring with thicker sum of skinfolds (3.23 mm, 0.19, 6.27) than did women with abruptly increasing levels (87.4%) (p < 0.05). In conclusion, this study suggests that distinctive trajectories of C10, C10:1, and C12 acylcarnitine levels throughout pregnancy were significantly associated with neonatal anthropometry.