ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Weinstein, Stephanie J."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Exploratory genome-wide interaction analysis of non-steroidal anti-inflammatory drugs and predicted gene expression on colorectal cancer risk
    (American Association for Cancer Research, 2020-09) Wang, Xiaoliang; Su, Yu-Ru; Petersen, Paneen S.; Bien, Stephanie; Schmit, Stephanie L.; Drew, David A.; Albanes, Demetrius; Berndt, Sonja I.; Brenner, Hermann; Campbell, Peter T.; Casey, Graham; Chang-Claude, Jenny; Gallinger, Steven J.; Gruber, Stephen B.; Haile, Robert W.; Harrison, Tabitha A.; Hoffmeister, Michael; Jacobs, Eric J.; Jenkins, Mark A.; Joshi, Amit D.; Li, Li; Lin, Yi; Lindor, Noralane M.; Le Marchand, Loïc; Martin, Vicente; Milne, Roger; Maclnnis, Robert; Moreno, Victor; Nan, Hongmei; Newcomb, Polly A.; Potter, John D.; Rennert, Gad; Rennert, Hedy; Slattery, Martha L.; Thibodeau, Steve N.; Weinstein, Stephanie J.; Woods, Michael O.; Chan, Andrew T.; White, Emily; Hsu, Li; Peters, Ulrike; Global Health, School of Public Health
    Background: Regular use of nonsteroidal anti-inflammatory drugs (NSAID) is associated with lower risk of colorectal cancer. Genome-wide interaction analysis on single variants (G × E) has identified several SNPs that may interact with NSAIDs to confer colorectal cancer risk, but variations in gene expression levels may also modify the effect of NSAID use. Therefore, we tested interactions between NSAID use and predicted gene expression levels in relation to colorectal cancer risk. Methods: Genetically predicted gene expressions were tested for interaction with NSAID use on colorectal cancer risk among 19,258 colorectal cancer cases and 18,597 controls from 21 observational studies. A Mixed Score Test for Interactions (MiSTi) approach was used to jointly assess G × E effects which are modeled via fixed interaction effects of the weighted burden within each gene set (burden) and residual G × E effects (variance). A false discovery rate (FDR) at 0.2 was applied to correct for multiple testing. Results: Among the 4,840 genes tested, genetically predicted expression levels of four genes modified the effect of any NSAID use on colorectal cancer risk, including DPP10 (PG×E = 1.96 × 10-4), KRT16 (PG×E = 2.3 × 10-4), CD14 (PG×E = 9.38 × 10-4), and CYP27A1 (PG×E = 1.44 × 10-3). There was a significant interaction between expression level of RP11-89N17 and regular use of aspirin only on colorectal cancer risk (PG×E = 3.23 × 10-5). No interactions were observed between predicted gene expression and nonaspirin NSAID use at FDR < 0.2. Conclusions: By incorporating functional information, we discovered several novel genes that interacted with NSAID use.
  • Loading...
    Thumbnail Image
    Item
    Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels
    (Nature Publishing Group, 2018-01-17) Jiang, Xia; O’Reilly, Paul F.; Aschard, Hugues; Hsu, Yi-Hsiang; Richards, J. Brent; Dupuis, Josée; Ingelsson, Erik; Karasik, David; Pilz, Stefan; Berry, Diane; Kestenbaum, Bryan; Zheng, Jusheng; Luan, Jianan; Sofianopoulou, Eleni; Streeten, Elizabeth A.; Albanes, Demetrius; Lutsey, Pamela L.; Yao, Lu; Tang, Weihong; Econs, Michael J.; Wallaschofski, Henri; Völzke, Henry; Zhou, Ang; Power, Chris; McCarthy, Mark I.; Michos, Erin D.; Boerwinkle, Eric; Weinstein, Stephanie J.; Freedman, Neal D.; Huang, Wen-Yi; Van Schoor, Natasja M.; Velde, Nathalie van der; de Groot, Lisette C. P. G. M.; Enneman, Anke; Cupples, L. Adrienne; Booth, Sarah L.; Vasan, Ramachandran S.; Liu, Ching-Ti; Zhou, Yanhua; Ripatti, Samuli; Ohlsson, Claes; Vandenput, Liesbeth; Lorentzon, Mattias; Eriksson, Johan G.; Shea, M. Kyla; Houston, Denise K.; Kritchevsky, Stephen B.; Liu, Yongmei; Lohman, Kurt K.; Ferrucci, Luigi; Peacock, Munro; Gieger, Christian; Beekman, Marian; Slagboom, Eline; Deelen, Joris; Heemst, Diana van; Kleber, Marcus E.; März, Winfried; de Boer, Ian H.; Wood, Alexis C.; Rotter, Jerome I.; Rich, Stephen S.; Robinson-Cohen, Cassianne; Heijer, Martin den; Jarvelin, Marjo-Riitta; Cavadino, Alana; Joshi, Peter K.; Wilson, James F.; Hayward, Caroline; Lind, Lars; Michaëlsson, Karl; Trompet, Stella; Zillikens, M. Carola; Uitterlinden, Andre G.; Rivadeneira, Fernando; Broer, Linda; Zgaga, Lina; Campbell, Harry; Theodoratou, Evropi; Farrington, Susan M.; Timofeeva, Maria; Dunlop, Malcolm G.; Valdes, Ana M.; Tikkanen, Emmi; Lehtimäki, Terho; Lyytikäinen, Leo-Pekka; Kähönen, Mika; Raitakari, Olli T.; Mikkilä, Vera; Ikram, M. Arfan; Sattar, Naveed; Jukema, J. Wouter; Wareham, Nicholas J.; Langenberg, Claudia; Forouhi, Nita G.; Gundersen, Thomas E.; Khaw, Kay-Tee; Butterworth, Adam S.; Danesh, John; Spector, Timothy; Wang, Thomas J.; Hyppönen, Elina; Kraft, Peter; Kiel, Douglas P.; Medicine, School of Medicine
    Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7×10-9 at rs8018720 in SEC23A, and P = 1.9×10-14 at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels
  • Loading...
    Thumbnail Image
    Item
    Genome-wide Interaction Study with Smoking for Colorectal Cancer Risk Identifies Novel Genetic Loci Related to Tumor Suppression, Inflammation, and Immune Response
    (American Association for Cancer Research, 2023) Carreras-Torres, Robert; Kim, Andre E.; Lin, Yi; Díez-Obrero, Virginia; Bien, Stephanie A.; Qu, Conghui; Wang, Jun; Dimou, Niki; Aglago, Elom K.; Albanes, Demetrius; Arndt, Volker; Baurley, James W.; Berndt, Sonja I.; Bézieau, Stéphane; Bishop, D. Timothy; Bouras, Emmanouil; Brenner, Hermann; Budiarto, Arif; Campbell, Peter T.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chen, Xuechen; Conti, David V.; Dampier, Christopher H.; Devall, Matthew A. M.; Drew, David A.; Figueiredo, Jane C.; Gallinger, Steven; Giles, Graham G.; Gruber, Stephen B.; Gsur, Andrea; Gunter, Marc J.; Harrison, Tabitha A.; Hidaka, Akihisa; Hoffmeister, Michael; Huyghe, Jeroen R.; Jenkins, Mark A.; Jordahl, Kristina M.; Kawaguchi, Eric; Keku, Temitope O.; Kundaje, Anshul; Le Marchand, Loic; Lewinger, Juan Pablo; Li, Li; Mahesworo, Bharuno; Morrison, John L.; Murphy, Neil; Nan, Hongmei; Nassir, Rami; Newcomb, Polly A.; Obón-Santacana, Mireia; Ogino, Shuji; Ose, Jennifer; Pai, Rish K.; Palmer, Julie R.; Papadimitriou, Nikos; Pardamean, Bens; Peoples, Anita R.; Pharoah, Paul D. P.; Platz, Elizabeth A.; Rennert, Gad; Ruiz-Narvaez, Edward; Sakoda, Lori C.; Scacheri, Peter C.; Schmit, Stephanie L.; Schoen, Robert E.; Shcherbina, Anna; Slattery, Martha L.; Stern, Mariana C.; Su, Yu-Ru; Tangen, Catherine M.; Thomas, Duncan C.; Tian, Yu; Tsilidis, Konstantinos K.; Ulrich, Cornelia M.; van Duijnhoven, Fränzel J. B.; Van Guelpen, Bethany; Visvanathan, Kala; Vodicka, Pavel; Wawan Cenggoro, Tjeng; Weinstein, Stephanie J.; White, Emily; Wolk, Alicja; Woods, Michael O.; Hsu, Li; Peters, Ulrike; Moreno, Victor; Gauderman, W. James; Epidemiology, Richard M. Fairbanks School of Public Health
    Background: Tobacco smoking is an established risk factor for colorectal cancer. However, genetically defined population subgroups may have increased susceptibility to smoking-related effects on colorectal cancer. Methods: A genome-wide interaction scan was performed including 33,756 colorectal cancer cases and 44,346 controls from three genetic consortia. Results: Evidence of an interaction was observed between smoking status (ever vs. never smokers) and a locus on 3p12.1 (rs9880919, P = 4.58 × 10-8), with higher associated risk in subjects carrying the GG genotype [OR, 1.25; 95% confidence interval (CI), 1.20-1.30] compared with the other genotypes (OR <1.17 for GA and AA). Among ever smokers, we observed interactions between smoking intensity (increase in 10 cigarettes smoked per day) and two loci on 6p21.33 (rs4151657, P = 1.72 × 10-8) and 8q24.23 (rs7005722, P = 2.88 × 10-8). Subjects carrying the rs4151657 TT genotype showed higher risk (OR, 1.12; 95% CI, 1.09-1.16) compared with the other genotypes (OR <1.06 for TC and CC). Similarly, higher risk was observed among subjects carrying the rs7005722 AA genotype (OR, 1.17; 95% CI, 1.07-1.28) compared with the other genotypes (OR <1.13 for AC and CC). Functional annotation revealed that SNPs in 3p12.1 and 6p21.33 loci were located in regulatory regions, and were associated with expression levels of nearby genes. Genetic models predicting gene expression revealed that smoking parameters were associated with lower colorectal cancer risk with higher expression levels of CADM2 (3p12.1) and ATF6B (6p21.33). Conclusions: Our study identified novel genetic loci that may modulate the risk for colorectal cancer of smoking status and intensity, linked to tumor suppression and immune response. Impact: These findings can guide potential prevention treatments.
  • Loading...
    Thumbnail Image
    Item
    Interactions between folate intake and genetic predictors of gene expression levels associated with colorectal cancer risk
    (Springer, 2022-11-07) Haas, Cameron B.; Su, Yu-Ru; Petersen, Paneen; Wang, Xiaoliang; Bien, Stephanie A.; Lin, Yi; Albanes, Demetrius; Weinstein, Stephanie J.; Jenkins, Mark A.; Figueiredo, Jane C.; Newcomb, Polly A.; Casey, Graham; Marchand, Loic Le; Campbell, Peter T.; Moreno, Victor; Potter, John D.; Sakoda, Lori C.; Slattery, Martha L.; Chan, Andrew T.; Li, Li; Giles, Graham G.; Milne, Roger L.; Gruber, Stephen B.; Rennert, Gad; Woods, Michael O.; Gallinger, Steven J.; Berndt, Sonja; Hayes, Richard B.; Huang, Wen-Yi; Wolk, Alicja; White, Emily; Nan, Hongmei; Nassir, Rami; Lindor, Noralane M.; Lewinger, Juan P.; Kim, Andre E.; Conti, David; Gauderman, W. James; Buchanan, Daniel D.; Peters, Ulrike; Hsu , Li; Epidemiology, Richard M. Fairbanks School of Public Health
    Observational studies have shown higher folate consumption to be associated with lower risk of colorectal cancer (CRC). Understanding whether and how genetic risk factors interact with folate could further elucidate the underlying mechanism. Aggregating functionally relevant genetic variants in set-based variant testing has higher power to detect gene-environment (G × E) interactions and may provide information on the underlying biological pathway. We investigated interactions between folate consumption and predicted gene expression on colorectal cancer risk across the genome. We used variant weights from the PrediXcan models of colon tissue-specific gene expression as a priori variant information for a set-based G × E approach. We harmonized total folate intake (mcg/day) based on dietary intake and supplemental use across cohort and case-control studies and calculated sex and study specific quantiles. Analyses were performed using a mixed effects score tests for interactions between folate and genetically predicted expression of 4839 genes with available genetically predicted expression. We pooled results across 23 studies for a total of 13,498 cases with colorectal tumors and 13,918 controls of European ancestry. We used a false discovery rate of 0.2 to identify genes with suggestive evidence of an interaction. We found suggestive evidence of interaction with folate intake on CRC risk for genes including glutathione S-Transferase Alpha 1 (GSTA1; p = 4.3E-4), Tonsuko Like, DNA Repair Protein (TONSL; p = 4.3E-4), and Aspartylglucosaminidase (AGA: p = 4.5E-4). We identified three genes involved in preventing or repairing DNA damage that may interact with folate consumption to alter CRC risk. Glutathione is an antioxidant, preventing cellular damage and is a downstream metabolite of homocysteine and metabolized by GSTA1. TONSL is part of a complex that functions in the recovery of double strand breaks and AGA plays a role in lysosomal breakdown of glycoprotein.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University