- Browse by Author
Browsing by Author "Weinshilboum, Richard M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Anastrozole has an association between degree of estrogen suppression and outcomes in early breast cancer and is a ligand for estrogen receptor α(American Association of Cancer Research, 2020-06-15) Ingle, James N.; Cairns, Junmei; Suman, Vera J.; Shepherd, Lois E.; Fasching, Peter A.; Hoskin, Tanya L.; Singh, Ravinder J.; Desta, Zeruesenay; Kalari, Krishna R.; Ellis, Matthew J.; Goss, Paul E.; Chen, Bingshu E.; Volz, Bernhard; Barman, Poulami; Carlson, Erin E.; Haddad, Tufia; Goetz, Matthew P.; Goodnature, Barbara; Cuellar, Matthew E.; Walters, Michael A.; Correia, Cristina; Kaufmann, Scott H.; Weinshilboum, Richard M.; Wang, Liewei; Medicine, School of MedicinePurpose: To determine if the degree of estrogen suppression with aromatase inhibitors (AI: anastrozole, exemestane, letrozole) is associated with efficacy in early-stage breast cancer, and to examine for differences in the mechanism of action between the three AIs. Experimental design: Matched case-control studies [247 matched sets from MA.27 (anastrozole vs. exemestane) and PreFace (letrozole) trials] were undertaken to assess whether estrone (E1) or estradiol (E2) concentrations after 6 months of adjuvant therapy were associated with risk of an early breast cancer event (EBCE). Preclinical laboratory studies included luciferase activity, cell proliferation, radio-labeled ligand estrogen receptor binding, surface plasmon resonance ligand receptor binding, and nuclear magnetic resonance assays. Results: Women with E1 ≥1.3 pg/mL and E2 ≥0.5 pg/mL after 6 months of AI treatment had a 2.2-fold increase in risk (P = 0.0005) of an EBCE, and in the anastrozole subgroup, the increase in risk of an EBCE was 3.0-fold (P = 0.001). Preclinical laboratory studies examined mechanisms of action in addition to aromatase inhibition and showed that only anastrozole could directly bind to estrogen receptor α (ERα), activate estrogen response element-dependent transcription, and stimulate growth of an aromatase-deficient CYP19A1-/- T47D breast cancer cell line. Conclusions: This matched case-control clinical study revealed that levels of estrone and estradiol above identified thresholds after 6 months of adjuvant anastrozole treatment were associated with increased risk of an EBCE. Preclinical laboratory studies revealed that anastrozole, but not exemestane or letrozole, is a ligand for ERα. These findings represent potential steps towards individualized anastrozole therapy.Item Cancer Pharmacogenomics and Pharmacoepidemiology: Setting a Research Agenda to Accelerate Translation(Oxford University Press, 2010-10-13) Freedman, Andrew N.; Sansbury, Leah B.; Figg, William D.; Potosky, Arnold L.; Smith, Sheila R. Weiss; Khoury, Muin J.; Nelson, Stefanie A.; Weinshilboum, Richard M.; Ratain, Mark J.; McLeod, Howard L.; Epstein, Robert S.; Ginsburg, Geoffrey S.; Schilsky, Richard L.; Liu, Geoffrey; Flockhart, David A.; Ulrich, Cornelia M.; Davis, Robert L.; Lesko, Lawrence J.; Zineh, Issam; Randhawa, Gurvaneet; Ambrosone, Christine B.; Relling, Mary V.; Rothman, Nat; Xie, Heng; Spitz, Margaret R.; Ballard-Barbash, Rachel; Doroshow, James H.; Minasian, Lori M.; Medicine, School of MedicineRecent advances in genomic research have demonstrated a substantial role for genomic factors in predicting response to cancer therapies. Researchers in the fields of cancer pharmacogenomics and pharmacoepidemiology seek to understand why individuals respond differently to drug therapy, in terms of both adverse effects and treatment efficacy. To identify research priorities as well as the resources and infrastructure needed to advance these fields, the National Cancer Institute (NCI) sponsored a workshop titled “Cancer Pharmacogenomics: Setting a Research Agenda to Accelerate Translation” on July 21, 2009, in Bethesda, MD. In this commentary, we summarize and discuss five science-based recommendations and four infrastructure-based recommendations that were identified as a result of discussions held during this workshop. Key recommendations include 1) supporting the routine collection of germline and tumor biospecimens in NCI-sponsored clinical trials and in some observational and population-based studies; 2) incorporating pharmacogenomic markers into clinical trials; 3) addressing the ethical, legal, social, and biospecimen- and data-sharing implications of pharmacogenomic and pharmacoepidemiologic research; and 4) establishing partnerships across NCI, with other federal agencies, and with industry. Together, these recommendations will facilitate the discovery and validation of clinical, sociodemographic, lifestyle, and genomic markers related to cancer treatment response and adverse events, and they will improve both the speed and efficiency by which new pharmacogenomic and pharmacoepidemiologic information is translated into clinical practice.Item Estrogens and their precursors in postmenopausal women with early breast cancer receiving anastrozole(Elsevier, 2015-07) Ingle, James N.; Kalari, K. R.; Buzdar, Aman U.; Robson, Mark E.; Goetz, Matthew P.; Desta, Zeruesenay; Barman, Poulami; Dudenkov, Tanda T.; Northfelt, Donald W.; Perez, Edith A.; Flockhart, David A.; Williard, Clark V.; Wang, Liewei; Weinshilboum, Richard M.; Department of Medicine, IU School of MedicinePURPOSE: We determined hormone concentrations (estradiol [E2], estrone [E1], estrone conjugates [E1-C], androstenedione [A], testosterone [T]) before and on anastrozole therapy where we also determined plasma concentrations of anastrozole and its metabolites. EXPERIMENTAL: Postmenopausal women who were to receive adjuvant anastrozole for resected early breast cancer were studied. Pretreatment, blood samples were obtained for the acquisition of DNA and for plasma hormone measurements (E2, E1, E1-C, A, and T). A second blood draw was obtained at least 4 weeks after starting anastrozole for hormone, anastrozole and metabolite measurements. For hormone assays, a validated bioanalytical method using gas chromatography negative ionization tandem mass spectrometry was used. Anastrozole and metabolite assays involved extraction of plasma followed by LC/MS/MS assays. RESULTS: 649 patients were evaluable. Pretreatment and during anastrozole, there was large inter-individual variability in E2, E1, and E1-C as well as anastrozole and anastrozole metabolite concentrations. E2 and E1 concentrations were below the lower limits of quantitation in 79% and 70%, respectively, of patients on anastrozole therapy, but those with reliable concentrations had a broad range (0.627-234.0 pg/mL, 1.562-183.2 pg/mL, respectively). Considering E2, 8.9% had the same or higher concentration relative to baseline while on anastrozole, documented by the presence of drug. CONCLUSIONS: We demonstrated large inter-individual variability in anastrozole and anastrozole metabolite concentrations as well as E1, E2, E1-C, A, and T concentrations before and while on anastrozole. These findings suggest that the standard 1mg daily dose of anastrozole is not optimal for a substantial proportion of women with breast cancer.