- Browse by Author
Browsing by Author "Weekman, Erica M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Alzheimer's disease and inflammatory biomarkers positively correlate in plasma in the UK‐ADRC cohort(Wiley, 2024) Foley, Kate E.; Winder, Zachary; Sudduth, Tiffany L.; Martin, Barbara J.; Nelson, Peter T.; Jicha, Gregory A.; Harp, Jordan P.; Weekman, Erica M.; Wilcock, Donna M.; Neurology, School of MedicineIntroduction: Protein-based plasma assays provide hope for improving accessibility and specificity of molecular diagnostics to diagnose dementia. Methods: Plasma was obtained from participants (N = 837) in our community-based University of Kentucky Alzheimer's Disease Research Center cohort. We evaluated six Alzheimer's disease (AD)- and neurodegeneration-related (Aβ40, Aβ42, Aβ42/40, p-tau181, total tau, and NfLight) and five inflammatory biomarkers (TNF𝛼, IL6, IL8, IL10, and GFAP) using the SIMOA-based protein assay platform. Statistics were performed to assess correlations. Results: Our large cohort reflects previous plasma biomarker findings. Relationships between biomarkers to understand AD-inflammatory biomarker correlations showed significant associations between AD and inflammatory biomarkers suggesting peripheral inflammatory interactions with increasing AD pathology. Biomarker associations parsed out by clinical diagnosis (normal, MCI, and dementia) reveal changes in strength of the correlations across the cognitive continuum. Discussion: Unique AD-inflammatory biomarker correlations in a community-based cohort reveal a new avenue for utilizing plasma-based biomarkers in the assessment of AD and related dementias. Highlights: Large community cohorts studying sex, age, and APOE genotype effects on biomarkers are few. It is unknown how biomarker-biomarker associations vary through aging and dementia. Six AD (Aβ40, Aβ42, Aβ42/40, p-tau181, total tau, and NfLight) and five inflammatory biomarkers (TNFα, IL6, IL8, IL10, and GFAP) were used to examine associations between biomarkers. Plasma biomarkers suggesting increasing cerebral AD pathology corresponded to increases in peripheral inflammatory markers, both pro-inflammatory and anti-inflammatory. Strength of correlations, between pairs of classic AD and inflammatory plasma biomarker, changes throughout cognitive progression to dementia.Item Atorvastatin rescues hyperhomocysteinemia-induced cognitive deficits and neuroinflammatory gene changes(BMC, 2023-09-01) Weekman, Erica M.; Johnson, Sherika N.; Rogers, Colin B.; Sudduth, Tiffany L.; Xie, Kevin; Qiao, Qi; Fardo, David W.; Bottiglieri, Teodoro; Wilcock, Donna M.; Neurology, School of MedicineBackground: Epidemiological data suggests statins could reduce the risk of dementia, and more specifically, Alzheimer's disease (AD). Pre-clinical data suggests statins reduce the risk of dementia through their pleiotropic effects rather than their cholesterol lowering effects. While AD is a leading cause of dementia, it is frequently found co-morbidly with cerebral small vessel disease and other vascular contributions to cognitive impairment and dementia (VCID), which are another leading cause of dementia. In this study, we determined if atorvastatin ameliorated hyperhomocysteinemia (HHcy)-induced VCID. Methods: Wild-type (C57Bl6/J) mice were placed on a diet to induce HHcy or a control diet each with or without atorvastatin for 14 weeks. Mice underwent novel object recognition testing before tissue collection. Plasma total cholesterol and total homocysteine as well as related metabolites were measured. Using qPCR and NanoString technology, we profiled glial cell-associated gene expression changes. Finally, microglial morphology, astrocyte end feet, and microhemorrhages were analyzed using histological methods. Results: Atorvastatin treatment of HHcy in mice led to no changes in total cholesterol but decreases in total homocysteine in plasma. While HHcy decreased expression of many glial genes, atorvastatin rescued these gene changes, which mostly occurred in oligodendrocytes and microglia. Microglia in HHcy mice with atorvastatin were trending towards fewer processes compared to control with atorvastatin, but there were no atorvastatin effects on astrocyte end feet. While atorvastatin treatment was trending towards increasing the area of microhemorrhages in HHcy mice in the frontal cortex, it only slightly (non-significantly) reduced the number of microhemorrhages. Finally, atorvastatin treatment in HHcy mice led to improved cognition on the novel object recognition task. Conclusions: These data suggest that atorvastatin rescued cognitive changes induced by HHcy most likely through lowering plasma total homocysteine and rescuing gene expression changes rather than impacts on vascular integrity or microglial changes.Item Mechanisms of ARIA: is it time to focus on the unique immune environment of the neurovascular unit?(BMC, 2023-10-20) Foley, Kate E.; Weekman, Erica M.; Wilcock, Donna M.; Neurology, School of Medicine