- Browse by Author
Browsing by Author "Wassermann, Eric M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item FDG-PET patterns associated with underlying pathology in corticobasal syndrome(American Academy of Neurology, 2019) Pardini, Matteo; Huey, Edward D.; Spina, Salvatore; Kreisl, William C.; Morbelli, Silvia; Wassermann, Eric M.; Nobili, Flavio; Ghetti, Bernardino; Grafman, Jordan; Pathology and Laboratory Medicine, School of MedicineObjective: To evaluate brain 18Fluorodeoxyglucose PET (FDG-PET) differences among patients with a clinical diagnosis of corticobasal syndrome (CBS) and distinct underling primary pathologies. Methods: We studied 29 patients with a diagnosis of CBS who underwent FDG-PET scan and postmortem neuropathologic examination. Patients were divided into subgroups on the basis of primary pathologic diagnosis: CBS-corticobasal degeneration (CBS-CBD) (14 patients), CBS-Alzheimer disease (CBS-AD) (10 patients), and CBS-progressive supranuclear palsy (CBS-PSP) (5 patients). Thirteen age-matched healthy patients who underwent FDG-PET were the control group (HC). FDG-PET scans were compared between the subgroups and the HC using SPM-12, with a threshold of p FWE < 0.05. Results: There were no differences in Mattis Dementia Rating Scale or finger tapping scores between CBS groups. Compared to HC, the patients with CBS presented significant hypometabolism in frontoparietal regions, including the perirolandic area, basal ganglia, and thalamus of the clinically more affected hemisphere. Patients with CBS-CBD showed a similar pattern with a more marked, bilateral involvement of the basal ganglia. Patients with CBS-AD presented with posterior, asymmetric hypometabolism, including the lateral parietal and temporal lobes and the posterior cingulate. Finally, patients with CBS-PSP disclosed a more anterior hypometabolic pattern, including the medial frontal regions and the anterior cingulate. A conjunction analysis revealed that the primary motor cortex was the only common area of hypometabolism in all groups, irrespective of pathologic diagnosis. Discussion and conclusions: In patients with CBS, different underling pathologies are associated with different patterns of hypometabolism. Our data suggest that FDG-PET scans could help in the etiologic diagnosis of CBS.Item Visuoperception test predicts pathologic diagnosis of Alzheimer disease in corticobasal syndrome(American Academy of Neurology, 2014-08-05) Boyd, Clara D.; Tierney, Michael; Wassermann, Eric M.; Spina, Salvatore; Oblak, Adrian L.; Ghetti, Bernardino; Grafman, Jordan; Huey, Edward; Department of Medicine, IU School of MedicineOBJECTIVE: To use the Visual Object and Space Perception Battery (VOSP) to distinguish Alzheimer disease (AD) from non-AD pathology in corticobasal syndrome (CBS). METHODS: This clinicopathologic study assessed 36 patients with CBS on the VOSP. All were autopsied. The primary dependent variable was a binary pathologic outcome: patients with CBS who had primary pathologic diagnosis of AD (CBS-AD, n = 10) vs patients with CBS without primary pathologic diagnosis of AD (CBS-nonAD, n = 26). We also determined sensitivity and specificity of individual VOSP subtests. RESULTS: Patients with CBS-AD had younger onset (54.5 vs 63.6 years, p = 0.001) and lower memory scores on the Mattis Dementia Rating Scale-2 (16 vs 22 points, p = 0.003). Failure on the VOSP subtests Incomplete Letters (odds ratio [OR] 11.5, p = 0.006), Position Discrimination (OR 10.86, p = 0.008), Number Location (OR 12.27, p = 0.026), and Cube Analysis (OR 45.71 p = 0.0001) had significantly greater odds of CBS-AD than CBS-nonAD. These associations remained when adjusting for total Mattis Dementia Rating score, disease laterality, education, age, and sex. Receiver operating characteristic curves demonstrated significant accuracy for Incomplete Letters and all VOSP spatial subtests, with Cube Analysis performing best (area under the curve 0.91, p = 0.0004). CONCLUSIONS: In patients with CBS, failure on specific VOSP subtests is associated with greater odds of having underlying AD. There may be preferential involvement of the dorsal stream in CBS-AD. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that some subtests of the VOSP accurately distinguish patients with CBS-AD from those without AD pathology (e.g., Cube Analysis sensitivity 100%, specificity 77%).