- Browse by Author
Browsing by Author "Warnock, Megan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item HOMA2-B enhances assessment of type 1 diabetes risk among TrialNet Pathway to Prevention participants(Springer, 2022) Felton, Jamie L.; Cuthbertson, David; Warnock, Megan; Lohano, Kuldeep; Meah, Farah; Wentworth, John M.; Sosenko, Jay; Evans-Molina, Carmella; Type 1 Diabetes TrialNet Study Group; Pediatrics, School of MedicineAims/hypothesis: Methods to identify individuals at highest risk for type 1 diabetes are essential for the successful implementation of disease-modifying interventions. Simple metabolic measures are needed to help stratify autoantibody-positive (Aab+) individuals who are at risk of developing type 1 diabetes. HOMA2-B is a validated mathematical tool commonly used to estimate beta cell function in type 2 diabetes using fasting glucose and insulin. The utility of HOMA2-B in association with type 1 diabetes progression has not been tested. Methods: Baseline HOMA2-B values from single-Aab+ (n = 2652; mean age, 21.1 ± 14.0 years) and multiple-Aab+ (n = 3794; mean age, 14.5 ± 11.2 years) individuals enrolled in the TrialNet Pathway to Prevention study were compared. Cox proportional hazard models were used to determine associations between HOMA2-B tertiles and time to progression to type 1 diabetes, with adjustments for age, sex, HLA status and BMI z score. Receiver operating characteristic (ROC) analysis was used to test the association of HOMA2-B with type 1 diabetes development in 1, 2, 5 and 10 years. Results: At study entry, HOMA2-B values were higher in single- compared with multiple-Aab+ Pathway to Prevention participants (91.1 ± 44.5 vs 83.9 ± 38.9; p < 0.001). Single- and multiple-Aab+ individuals in the lowest HOMA2-B tertile had a higher risk and faster rate of progression to type 1 diabetes. For progression to type 1 diabetes within 1 year, area under the ROC curve (AUC-ROC) was 0.685, 0.666 and 0.680 for all Aab+, single-Aab+ and multiple-Aab+ individuals, respectively. When correlation between HOMA2-B and type 1 diabetes risk was assessed in combination with additional factors known to influence type 1 diabetes progression (insulin sensitivity, age and HLA status), AUC-ROC was highest for the single-Aab+ group's risk of progression at 2 years (AUC-ROC 0.723 [95% CI 0.652, 0.794]). Conclusions/interpretation: These data suggest that HOMA2-B may have utility as a single-time-point measurement to stratify risk of type 1 diabetes development in Aab+ individuals.Item Index60 Is Superior to HbA1c for Identifying Individuals at High Risk for Type 1 Diabetes(Oxford University Press, 2022) Jacobsen, Laura M.; Bundy, Brian N.; Ismail, Heba M.; Clements, Mark; Warnock, Megan; Geyer, Susan; Schatz, Desmond A.; Sosenko, Jay M.; Pediatrics, School of MedicineContext: HbA1c from ≥ 5.7% to < 6.5% (39-46 mmol/mol) indicates prediabetes according to American Diabetes Association guidelines, yet its identification of prediabetes specific for type 1 diabetes has not been assessed. A composite glucose and C-peptide measure, Index60, identifies individuals at high risk for type 1 diabetes. Objective: We compared Index60 and HbA1c thresholds as markers for type 1 diabetes risk. Methods: TrialNet Pathway to Prevention study participants with ≥ 2 autoantibodies (GADA, IAA, IA-2A, or ZnT8A) who had oral glucose tolerance tests and HbA1c measurements underwent 1) predictive time-dependent modeling of type 1 diabetes risk (n = 2776); and 2) baseline comparisons between high-risk mutually exclusive groups: Index60 ≥ 2.04 (n = 268) vs HbA1c ≥ 5.7% (n = 268). The Index60 ≥ 2.04 threshold was commensurate in ordinal ranking with the standard prediabetes threshold of HbA1c ≥ 5.7%. Results: In mutually exclusive groups, individuals exceeding Index60 ≥ 2.04 had a higher cumulative incidence of type 1 diabetes than those exceeding HbA1c ≥ 5.7% (P < 0.0001). Appreciably more individuals with Index60 ≥ 2.04 were at stage 2, and among those at stage 2, the cumulative incidence was higher for those with Index60 ≥ 2.04 (P = 0.02). Those with Index60 ≥ 2.04 were younger, with lower BMI, greater autoantibody number, and lower C-peptide than those with HbA1c ≥ 5.7% (P < 0.0001 for all comparisons). Conclusion: Individuals with Index60 ≥ 2.04 are at greater risk for type 1 diabetes with features more characteristic of the disorder than those with HbA1c ≥ 5.7%. Index60 ≥ 2.04 is superior to the standard HbA1c ≥ 5.7% threshold for identifying prediabetes in autoantibody-positive individuals. These findings appear to justify using Index60 ≥ 2.04 as a prediabetes criterion in this population.Item Oral Glucose Tolerance Test Measures of First-phase Insulin Response and Their Predictive Ability for Type 1 Diabetes(Oxford University Press, 2022) Baidal, David A.; Warnock, Megan; Xu, Ping; Geyer, Susan; Marks, Jennifer B.; Moran, Antoinette; Sosenko, Jay; Evans-Molina, Carmella; Pediatrics, School of MedicineContext: Decreased first-phase insulin response (FPIR) during intravenous glucose tolerance testing (IVGTT) is an early indicator of β-cell dysfunction and predictor of type 1 diabetes (T1D). Objective: Assess whether oral glucose tolerance test (OGTT) measures could serve as FPIR alternatives in their ability to predict T1D in autoantibody positive (Aab+) subjects. Design: OGTT and IVGTT were performed within 30 days of each other. Eleven OGTT variables were evaluated for (1) correlation with FPIR and (2) T1D prediction. Setting: Type 1 Diabetes TrialNet "Oral Insulin for Prevention of Diabetes in Relatives at Risk for T1D" (TN-07) and Diabetes Prevention Trial-Type 1 Diabetes (DPT-1) studies clinical sites. Patients: TN-07 (n = 292; age 9.4 ± 6.1 years) and DPT-1 (n = 194; age 15.1 ± 10.0 years) Aab + relatives of T1D individuals. Main outcome measures: (1) Correlation coefficients of OGTT measures with FPIR and (2) T1D prediction at 2 years using area under receiver operating characteristic (ROCAUC) curves. Results: Index60 showed the strongest correlation in DPT-1 (r = -0.562) but was weaker in TN-07 (r = -0.378). C-peptide index consistently showed good correlation with FPIR across studies (TN-07, r = 0.583; DPT-1, r = 0.544; P < 0.0001). Index60 and C-peptide index had the highest ROCAUCs for T1D prediction (0.778 vs 0.717 in TN-07 and 0.763 vs 0.721 in DPT-1, respectively; P = NS), followed by FPIR (0.707 in TN-07; 0.628 in DPT-1). Conclusions: C-peptide index was the strongest measure to correlate with FPIR in both studies. Index60 and C-peptide index had the highest predictive accuracy for T1D and were comparable. OGTTs could be considered instead of IVGTTs for subject stratification in T1D prevention trials.