- Browse by Author
Browsing by Author "Ware, James S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Harmonizing the Collection of Clinical Data on Genetic Testing Requisition Forms to Enhance Variant Interpretation in Hypertrophic Cardiomyopathy (HCM): A Study from the ClinGen Cardiomyopathy Variant Curation Expert Panel(Elsevier, 2021-05) Morales, Ana; Ing, Alexander; Antolik, Christian; Austin-Tse, Christina; Baudhuin, Linnea M.; Bronicki, Lucas; Cirino, Allison; Hawley, Megan H.; Fietz, Michael; Garcia, John; Ho, Carolyn; Ingles, Jodie; Jarinova, Olga; Johnston, Tami; Kelly, Melissa A.; Kurtz, C. Lisa; Lebo, Matt; Macaya, Daniela; Mahanta, Lisa; Maleszewski, Joseph; Manrai, Arjun K.; Murray, Mitzi; Richard, Gabriele; Semsarian, Chris; Thomson, Kate L.; Winder, Tom; Ware, James S.; Hershberger, Ray E.; Funke, Birgit H.; Vatta, Matteo; Medical and Molecular Genetics, School of MedicineDiagnostic laboratories gather phenotypic data through requisition forms, but there is no consensus as to which data are essential for variant interpretation. The ClinGen Cardiomyopathy Variant Curation Expert Panel defined a phenotypic data set for hypertrophic cardiomyopathy (HCM) variant interpretation, with the goal of standardizing requisition forms. Phenotypic data elements listed on requisition forms from nine leading cardiomyopathy testing laboratories were compiled to assess divergence in data collection. A pilot of 50 HCM cases was implemented to determine the feasibility of harmonizing data collection. Laboratory directors were surveyed to gauge potential for adoption of a minimal data set. Wide divergence was observed in the phenotypic data fields in requisition forms. The 50-case pilot showed that although demographics and assertion of a clinical diagnosis of HCM had 86% to 98% completion, specific phenotypic features, such as degree of left ventricular hypertrophy, ejection fraction, and suspected syndromic disease, were completed only 24% to 44% of the time. Nine data elements were deemed essential for variant classification by the expert panel. Participating laboratories unanimously expressed a willingness to adopt these data elements in their requisition forms. This study demonstrates the value of comparing and sharing best practices through an expert group, such as the ClinGen Program, to enhance variant interpretation, providing a foundation for leveraging cumulative case-level data in public databases and ultimately improving patient care.Item The Human Phenotype Ontology in 2024: phenotypes around the world(Oxford University Press, 2024) Gargano, Michael A.; Matentzoglu, Nicolas; Coleman, Ben; Addo-Lartey, Eunice B.; Anagnostopoulos, Anna V.; Anderton, Joel; Avillach, Paul; Bagley, Anita M.; Bakštein, Eduard; Balhoff, James P.; Baynam, Gareth; Bello, Susan M.; Berk, Michael; Bertram, Holli; Bishop, Somer; Blau, Hannah; Bodenstein, David F.; Botas, Pablo; Boztug, Kaan; Čady, Jolana; Callahan, Tiffany J.; Cameron, Rhiannon; Carbon, Seth J.; Castellanos, Francisco; Caufield, J. Harry; Chan, Lauren E.; Chute, Christopher G.; Cruz-Rojo, Jaime; Dahan-Oliel, Noémi; Davids, Jon R.; de Dieuleveult, Maud; de Souza, Vinicius; de Vries, Bert B. A.; de Vries, Esther; DePaulo, J. Raymond; Derfalvi, Beata; Dhombres, Ferdinand; Diaz-Byrd, Claudia; Dingemans, Alexander J. M.; Donadille, Bruno; Duyzend, Michael; Elfeky, Reem; Essaid, Shahim; Fabrizzi, Carolina; Fico, Giovanna; Firth, Helen V.; Freudenberg-Hua, Yun; Fullerton, Janice M.; Gabriel, Davera L.; Gilmour, Kimberly; Giordano, Jessica; Goes, Fernando S.; Gore Moses, Rachel; Green, Ian; Griese, Matthias; Groza, Tudor; Gu, Weihong; Guthrie, Julia; Gyori, Benjamin; Hamosh, Ada; Hanauer, Marc; Hanušová, Kateřina; He, Yongqun Oliver; Hegde, Harshad; Helbig, Ingo; Holasová, Kateřina; Hoyt, Charles Tapley; Huang, Shangzhi; Hurwitz, Eric; Jacobsen, Julius O. B.; Jiang, Xiaofeng; Joseph, Lisa; Keramatian, Kamyar; King, Bryan; Knoflach, Katrin; Koolen, David A.; Kraus, Megan L.; Kroll, Carlo; Kusters, Maaike; Ladewig, Markus S.; Lagorce, David; Lai, Meng-Chuan; Lapunzina, Pablo; Laraway, Bryan; Lewis-Smith, David; Li, Xiarong; Lucano, Caterina; Majd, Marzieh; Marazita, Mary L.; Martinez-Glez, Victor; McHenry, Toby H.; McInnis, Melvin G.; McMurry, Julie A.; Mihulová, Michaela; Millett, Caitlin E.; Mitchell, Philip B.; Moslerová, Veronika; Narutomi, Kenji; Nematollahi, Shahrzad; Nevado, Julian; Nierenberg, Andrew A.; Novák Čajbiková, Nikola; Nurnberger, John I., Jr.; Ogishima, Soichi; Olson, Daniel; Ortiz, Abigail; Pachajoa, Harry; Perez de Nanclares, Guiomar; Peters, Amy; Putman, Tim; Rapp, Christina K.; Rath, Ana; Reese, Justin; Rekerle, Lauren; Roberts, Angharad M.; Roy, Suzy; Sanders, Stephan J.; Schuetz, Catharina; Schulte, Eva C.; Schulze, Thomas G.; Schwarz, Martin; Scott, Katie; Seelow, Dominik; Seitz, Berthold; Shen, Yiping; Similuk, Morgan N.; Simon, Eric S.; Singh, Balwinder; Smedley, Damian; Smith, Cynthia L.; Smolinsky, Jake T.; Sperry, Sarah; Stafford, Elizabeth; Stefancsik, Ray; Steinhaus, Robin; Strawbridge, Rebecca; Sundaramurthi, Jagadish Chandrabose; Talapova, Polina; Tenorio Castano, Jair A.; Tesner, Pavel; Thomas, Rhys H.; Thurm, Audrey; Turnovec, Marek; van Gijn, Marielle E.; Vasilevsky, Nicole A.; Vlčková, Markéta; Walden, Anita; Wang, Kai; Wapner, Ron; Ware, James S.; Wiafe, Addo A.; Wiafe, Samuel A.; Wiggins, Lisa D.; Williams, Andrew E.; Wu, Chen; Wyrwoll, Margot J.; Xiong, Hui; Yalin, Nefize; Yamamoto, Yasunori; Yatham, Lakshmi N.; Yocum, Anastasia K.; Young, Allan H.; Yüksel, Zafer; Zandi, Peter P.; Zankl, Andreas; Zarante, Ignacio; Zvolský, Miroslav; Toro, Sabrina; Carmody, Leigh C.; Harris, Nomi L.; Munoz-Torres, Monica C.; Danis, Daniel; Mungall, Christopher J.; Köhler, Sebastian; Haendel, Melissa A.; Robinson, Peter N.; Psychiatry, School of MedicineThe Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.