- Browse by Author
Browsing by Author "Ward, Eric J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Thalamic GABA levels and Occupational Manganese Neurotoxicity: Association with Exposure Levels and Brain MRI(Elsevier, 2017) Ma, Ruoyun E.; Ward, Eric J.; Yeh, Chien-Lin; Snyder, Sandy; Long, Zaiyang; Yavuz, Fulya Gokalp; Zauber, S. Elizabeth; Dydak, Ulrike; Department of Neurology, School of MedicineExcessive occupational exposure to Manganese (Mn) has been associated with clinical symptoms resembling idiopathic Parkinson’s disease (IPD), impairing cognitive and motor functions. Several studies point towards an involvement of the brain neurotransmitter system in Mn intoxication, which is hypothesized to be disturbed prior to onset of symptoms. Edited Magnetic Resonance Spectroscopy (MRS) offers the unique possibility to measure γ-amminobutyric acid (GABA) and other neurometabolites in vivo non-invasively in workers exposed to Mn. In addition, the property of Mn as Magnetic Resonance Imaging (MRI) contrast agent may be used to study Mn deposition in the human brain. In this study, using MRI, MRS, personal air sampling at the working place, work history questionnaires, and neurological assessment (UPDRS-III), the effects of chronic Mn exposure on the thalamic GABAergic system was studied in a group of welders (N = 39) with exposure to Mn fumes in a typical occupational setting. Two subgroups of welders with different exposure levels (Low: N = 26; mean air Mn = 0.13 ± 0.1 mg/m3; High: N = 13; mean air Mn = 0.23 ± 0.18 mg/m3), as well as unexposed control workers (N = 22, mean air Mn = 0.002 ± 0.001 mg/m3) were recruited. The group of welders with higher exposure showed a significant increase of thalamic GABA levels by 45% (p < 0.01, F(1,33) = 9.55), as well as significantly worse performance in general motor function (p < 0.01, F(1,33) = 11.35). However, welders with lower exposure did not differ from the controls in GABA levels or motor performance. Further, in welders the thalamic GABA levels were best predicted by past-12-months exposure levels and were influenced by the Mn deposition in the substantia nigra and globus pallidus. Importantly, both thalamic GABA levels and motor function displayed a non-linear pattern of response to Mn exposure, suggesting a threshold effect.Item Toenail Manganese: A Sensitive and Specific Biomarker of Exposure to Manganese in Career Welders(Oxford University Press, 2017-12-15) Ward, Eric J.; Edmondson, David A.; Nour, Mahmoud M.; Snyder, Sandy; Rosenthal, Frank S.; Dydak, Ulrike; Radiology and Imaging Sciences, School of MedicineManganese (Mn) is an essential trace metal. It is also a component of welding fume. Chronic inhalation of manganese from welding fume has been associated with decreased neurological function. Currently, there is not a universally recognized biomarker for Mn exposure; however, hair and toenails have shown promise. In a cohort of 45 male welders and 35 age-matched factory control subjects, we assessed the sensitivity and specificity of toenail Mn to distinguish occupationally exposed subjects from unexposed controls. Further we examined the exposure time window that best correlates with the proposed biomarker, and investigated if non-occupational exposure factors impacted toenail Mn concentrations. Toenail clippings were analyzed for Mn using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Exposure to respirable Mn-containing particles (<4 µm) was estimated using an exposure model that combines personal air monitoring, work history information, and dietary intake to estimate an individual's exposure to Mn from inhalation of welding fume. We assessed the group differences in toenail concentrations using a Student's t-test between welders and control subjects and performed a receiver operating characteristic (ROC) curve analysis to identify a threshold in toenail concentration that has the highest sensitivity and specificity in distinguishing welders from control subjects. Additionally, we performed mixed-model regressions to investigate the association between different exposure windows and toenail Mn concentrations. We observed that toenail Mn concentrations were significantly elevated among welders compared to control subjects (6.87 ± 2.56 versus 2.70 ± 1.70 µg g-1; P < 0.001). Our results show that using a toenail Mn concentration of 4.14 µg g-1 as cutoff allows for discriminating between controls and welders with 91% specificity and 94% sensitivity [area under curve (AUC) = 0.98]. Additionally, we found that a threshold of 4.66 µg g-1 toenail Mn concentration enables a 90% sensitive and 90% specific discrimination (AUC = 0.96) between subjects with average exposure above or below the American Conference of Governmental Industrial Hygienist (ACGIH) Threshold Limit Value (TLV) of 0.02 mg m-3 during the exposure window of 7-12 months prior to the nail being clipped. Investigating which exposure window was best reflected by toenail Mn reproduced the result from another study of toenail Mn being significantly (P < 0.001) associated with exposure 7-12 months prior to the nail being clipped. Lastly, we found that dietary intake, body mass index, age, smoking status, and ethnicity had no significant effect on toenail Mn concentrations. Our results suggest that toenail Mn is a sensitive, specific, and easy-to-acquire biomarker of Mn exposure, which is feasible to be used in an industrial welder population.