- Browse by Author
Browsing by Author "Wang, Zhilin"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Blockchain and Federated Edge Learning for Privacy-Preserving Mobile Crowdsensing(IEEE Xplore, 2021-11) Hu, Qin; Wang, Zhilin; Xu, Minghui; Cheng, Xiuzhen; Computer and Information Science, School of ScienceMobile crowdsensing (MCS) counting on the mobility of massive workers helps the requestor accomplish various sensing tasks with more flexibility and lower cost. However, for the conventional MCS, the large consumption of communication resources for raw data transmission and high requirements on data storage and computing capability hinder potential requestors with limited resources from using MCS. To facilitate the widespread application of MCS, we propose a novel MCS learning framework leveraging on blockchain technology and the new concept of edge intelligence based on federated learning (FL), which involves four major entities, including requestors, blockchain, edge servers and mobile devices as workers. Even though there exist several studies on blockchain-based MCS and blockchain-based FL, they cannot solve the essential challenges of MCS with respect to accommodating resource-constrained requestors or deal with the privacy concerns brought by the involvement of requestors and workers in the learning process. To fill the gaps, four main procedures, i.e., task publication, data sensing and submission, learning to return final results, and payment settlement and allocation, are designed to address major challenges brought by both internal and external threats, such as malicious edge servers and dishonest requestors. Specifically, a mechanism design based data submission rule is proposed to guarantee the data privacy of mobile devices being truthfully preserved at edge servers; consortium blockchain based FL is elaborated to secure the distributed learning process; and a cooperation-enforcing control strategy is devised to elicit full payment from the requestor. Extensive simulations are carried out to evaluate the performance of our designed schemes.Item Blockchain-based Edge Resource Sharing for Metaverse(IEEE, 2022-10) Wang, Zhilin; Hut, Qin; Xu, Minghui; Jiang, Honglu; Computer and Information Science, School of ScienceAlthough Metaverse has recently been widely studied, its practical application still faces many challenges. One of the severe challenges is the lack of sufficient resources for computing and communication on local devices, resulting in the inability to access the Metaverse services. To address this issue, this paper proposes a practical blockchain-based mobile edge computing (MEC) platform for resource sharing and optimal utilization to complete the requested offloading tasks, given the heterogeneity of servers' available resources and that of users' task requests. To be specific, we first elaborate the design of our proposed system and then dive into the task allocation mechanism to assign offloading tasks to proper servers. To solve the multiple task allocation (MTA) problem in polynomial time, we devise a learning-based algorithm. Since the objective function and constraints of MTA are significantly affected by the servers uploading the tasks, we reformulate it as a reinforcement learning problem and calculate the rewards for each state and action considering the influences of servers. Finally, numerous experiments are conducted to demonstrate the effectiveness and efficiency of our proposed system and algorithms.Item A Correlated Equilibrium based Transaction Pricing Mechanism in Blockchain(IEEE, 2020-05) Hu, Qin; Nigam, Yash; Wang, Zhilin; Wang, Yawei; Xiao, Yinhao; Computer and Information Science, School of ScienceAlthough transaction fees are not obligatory in most of the current blockchain systems, extensive studies confirm their importance in maintaining the security and sustainability of blockchain. To enhance blockchain in the long term, it is crucial to design effective transaction pricing mechanisms. Different from the existing schemes based on auctions with more consideration about the profit of miners, we resort to game theory and propose a correlated equilibrium based transaction pricing mechanism through solving a pricing game among users with transactions, which can achieve both the individual and global optimum. To avoid the computational complexity exponentially increasing with the number of transactions, we further improve the game-theoretic solution with an approximate algorithm, which can derive almost the same results as the original one but costs significantly reduced time. Experimental results demonstrate the effectiveness and efficiency of our proposed mechanism.Item Defense Strategies Toward Model Poisoning Attacks in Federated Learning: A Survey(IEEE, 2022-04) Wang, Zhilin; Kang, Qiao; Zhang, Xinyi; Hu, Qin; Computer and Information Science, School of ScienceAdvances in distributed machine learning can empower future communications and networking. The emergence of federated learning (FL) has provided an efficient framework for distributed machine learning, which, however, still faces many security challenges. Among them, model poisoning attacks have a significant impact on the security and performance of FL. Given that there have been many studies focusing on defending against model poisoning attacks, it is necessary to survey the existing work and provide insights to inspire future research. In this paper, we first classify defense mechanisms for model poisoning attacks into two categories: evaluation methods for local model updates and aggregation methods for the global model. Then, we analyze some of the existing defense strategies in detail. We also discuss some potential challenges and future research directions. To the best of our knowledge, we are the first to survey defense methods for model poisoning attacks in FL.Item Transaction pricing mechanism design and assessment for blockchain(Elsevier, 2022-03) Wang, Zhilin; Hu, Qin; Wang, Yawei; Xiao, Yinhao; Computer and Information Science, School of ScienceThe importance of transaction fees in maintaining blockchain security and sustainability has been confirmed by extensive research, although they are not mandatory in most current blockchain systems. To enhance blockchain in the long term, it is crucial to design effective transaction pricing mechanisms. Different from the existing schemes based on auctions with more consideration about the profit of miners, we resort to game theory and propose a correlated equilibrium based transaction pricing mechanism through solving a pricing game among users with transactions, which can achieve both the individual and global optimum. To avoid the computational complexity exponentially increasing with the number of transactions, we further improve the game-theoretic solution with an approximate algorithm, which can derive almost the same results as the original one but costs significantly reduced time. We also propose a truthful assessment model for pricing mechanism to collect the feedback of users regarding the price suggestion. Extensive experimental results demonstrate the effectiveness and efficiency of our proposed mechanism.