- Browse by Author
Browsing by Author "Wang, Yuezhu"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item c-Met Mediated Cytokine Network Promotes Brain Metastasis of Breast Cancer by Remodeling Neutrophil Activities(MDPI, 2023-05-05) Liu, Yin; Smith, Margaret R.; Wang, Yuezhu; D’Agostino, Ralph, Jr.; Ruiz, Jimmy; Lycan, Thomas; Kucera, Gregory L.; Miller, Lance D.; Li, Wencheng; Chan, Michael D.; Farris, Michael; Su, Jing; Song, Qianqian; Zhao, Dawen; Chandrasekaran, Arvind; Xing, Fei; Biostatistics and Health Data Science, School of MedicineThe brain is one of the most common metastatic sites among breast cancer patients, especially in those who have Her2-positive or triple-negative tumors. The brain microenvironment has been considered immune privileged, and the exact mechanisms of how immune cells in the brain microenvironment contribute to brain metastasis remain elusive. In this study, we found that neutrophils are recruited and influenced by c-Met high brain metastatic cells in the metastatic sites, and depletion of neutrophils significantly suppressed brain metastasis in animal models. Overexpression of c-Met in tumor cells enhances the secretion of a group of cytokines, including CXCL1/2, G-CSF, and GM-CSF, which play critical roles in neutrophil attraction, granulopoiesis, and homeostasis. Meanwhile, our transcriptomic analysis demonstrated that conditioned media from c-Met high cells significantly induced the secretion of lipocalin 2 (LCN2) from neutrophils, which in turn promotes the self-renewal of cancer stem cells. Our study unveiled the molecular and pathogenic mechanisms of how crosstalk between innate immune cells and tumor cells facilitates tumor progression in the brain, which provides novel therapeutic targets for treating brain metastasis.Item Genomic signature for oligometastatic disease in non-small cell lung cancer patients with brain metastases(Frontiers Media, 2024-09-17) Choi, Ariel R.; D’Agostino, Ralph B., Jr.; Farris, Michael K.; Abdulhaleem, Mohammed; Hunting, John C.; Wang, Yuezhu; Smith, Margaret R.; Ruiz, Jimmy; Lycan, Thomas W.; Petty, W. Jeffrey; Cramer, Christina K.; Tatter, Stephen B.; Laxton, Adrian W.; White, Jaclyn J.; Li, Wencheng; Su, Jing; Whitlow, Christopher; Xing, Fei; Chan, Michael D.; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthPurpose/objectives: Biomarkers for extracranial oligometastatic disease remain elusive and few studies have attempted to correlate genomic data to the presence of true oligometastatic disease. Methods: Patients with non-small cell lung cancer (NSCLC) and brain metastases were identified in our departmental database. Electronic medical records were used to identify patients for whom liquid biopsy-based comprehensive genomic profiling (Guardant Health) was available. Extracranial oligometastatic disease was defined as patients having ≤5 non-brain metastases without diffuse involvement of a single organ. Widespread disease was any spread beyond oligometastatic. Fisher's exact tests were used to screen for mutations statistically associated (p<0.1) with either oligometastatic or widespread extracranial disease. A risk score for the likelihood of oligometastatic disease was generated and correlated to the likelihood of having oligometastatic disease vs widespread disease. For oligometastatic patients, a competing risk analysis was done to assess for cumulative incidence of oligometastatic progression. Cox regression was used to determine association between oligometastatic risk score and oligoprogression. Results: 130 patients met study criteria and were included in the analysis. 51 patients (39%) had extracranial oligometastatic disease. Genetic mutations included in the Guardant panel that were associated (p<0.1) with the presence of oligometastatic disease included ATM, JAK2, MAP2K2, and NTRK1, while ARID1A and CCNE1 were associated with widespread disease. Patients with a positive, neutral and negative risk score for oligometastatic disease had a 78%, 41% and 11.5% likelihood of having oligometastatic disease, respectively (p<0.0001). Overall survival for patients with positive, neutral and negative risk scores for oligometastatic disease was 86% vs 82% vs 64% at 6 months (p=0.2). Oligometastatic risk score was significantly associated with the likelihood of oligoprogression based on the Wald chi-square test. Patients with positive, neutral and negative risk scores for oligometastatic disease had a cumulative incidence of oligometastatic progression of 77% vs 35% vs 33% at 6 months (p=0.03). Conclusions: Elucidation of a genomic signature for extracranial oligometastatic disease derived from non-invasive liquid biopsy appears feasible for NSCLC patients. Patients with this signature exhibited higher rates of early oligoprogression. External validation could lead to a biomarker that has the potential to direct local therapies in oligometastatic patients.Item Modulation of oxidative phosphorylation and mitochondrial biogenesis by cigarette smoke influence the response to immune therapy in NSCLC patients(Elsevier, 2023-04) Wang, Yuezhu; Smith, Margaret; Ruiz, Jimmy; Liu, Yin; Kucera, Gregory L.; Topaloglu, Umit; Chan, Michael D.; Li, Wencheng; Su, Jing; Xing, Fei; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthThe treatment regimen of non-small cell lung cancer (NSCLC) has drastically changed owing to the superior anti-cancer effects generated by the immune-checkpoint blockade (ICB). However, only a subset of patients experience benefit after receiving ICBs. Therefore, it is of paramount importance to increase the response rate by elucidating the underlying molecular mechanisms and identifying novel therapeutic targets to enhance the efficacy of IBCs in non-responders. We analyzed the progression-free survival (PFS) and overall survival (OS) of 295 NSCLC patients who received anti-PD-1 therapy by segregating them with multiple clinical factors including sex, age, race, smoking history, BMI, tumor grade and subtype. We also identified key signaling pathways and mutations that are enriched in patients with distinct responses to ICB by gene set enrichment analysis (GSEA) and mutational analyses. We found that former and current smokers have a higher response rate to anti-PD-1 treatment than non-smokers. GSEA results revealed that oxidative phosphorylation (OXPHOS) and mitochondrial related pathways are significantly enriched in both responders and smokers, suggesting a potential role of cellular metabolism in regulating immune response to ICB. We also demonstrated that all-trans retinoic acid (ATRA) which enhances mitochondrial function significantly enhanced the efficacy of anti-PD-1 treatment in vivo. Our clinical and bioinformatics based analyses revealed a connection between smoking induced metabolic switch and the response to immunotherapy, which can be the basis for developing novel combination therapies that are beneficial to never smoked NSCLC patients.Item Prognostic Mutational Signatures of NSCLC Patients treated with chemotherapy, immunotherapy and chemoimmunotherapy(Springer Nature, 2023-03-27) Smith, Margaret R.; Wang, Yuezhu; D’Agostino, Ralph, Jr.; Liu, Yin; Ruiz, Jimmy; Lycan, Thomas; Oliver, George; Miller, Lance D.; Topaloglu, Umit; Pinkney, Jireh; Abdulhaleem, Mohammed N.; Chan, Michael D.; Farris, Michael; Su, Jing; Mileham, Kathryn F.; Xing, Fei; Biostatistics and Health Data Science, School of MedicineDifferent types of therapy are currently being used to treat non-small cell lung cancer (NSCLC) depending on the stage of tumor and the presence of potentially druggable mutations. However, few biomarkers are available to guide clinicians in selecting the most effective therapy for all patients with various genetic backgrounds. To examine whether patients' mutation profiles are associated with the response to a specific treatment, we collected comprehensive clinical characteristics and sequencing data from 524 patients with stage III and IV NSCLC treated at Atrium Health Wake Forest Baptist. Overall survival based Cox-proportional hazard regression models were applied to identify mutations that were "beneficial" (HR < 1) or "detrimental" (HR > 1) for patients treated with chemotherapy (chemo), immune checkpoint inhibitor (ICI) and chemo+ICI combination therapy (Chemo+ICI) followed by the generation of mutation composite scores (MCS) for each treatment. We also found that MCS is highly treatment specific that MCS derived from one treatment group failed to predict the response in others. Receiver operating characteristics (ROC) analyses showed a superior predictive power of MCS compared to TMB and PD-L1 status for immune therapy-treated patients. Mutation interaction analysis also identified novel co-occurring and mutually exclusive mutations in each treatment group. Our work highlights how patients' sequencing data facilitates the clinical selection of optimized treatment strategies.