- Browse by Author
Browsing by Author "Wang, Yeqiao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Comparative Assessment of Geostatistical, Machine Learning, and Hybrid Approaches for Mapping Topsoil Organic Carbon Content(MDPI, 2019-04) Chen, Lin; Ren, Chunying; Li, Lin; Wang, Yeqiao; Zhang, Bai; Wang, Zongming; Li, Linfeng; Earth Sciences, School of ScienceAccurate digital soil mapping (DSM) of soil organic carbon (SOC) is still a challenging subject because of its spatial variability and dependency. This study is aimed at comparing six typical methods in three types of DSM techniques for SOC mapping in an area surrounding Changchun in Northeast China. The methods include ordinary kriging (OK) and geographically weighted regression (GWR) from geostatistics, support vector machines for regression (SVR) and artificial neural networks (ANN) from machine learning, and geographically weighted regression kriging (GWRK) and artificial neural networks kriging (ANNK) from hybrid approaches. The hybrid approaches, in particular, integrated the GWR from geostatistics and ANN from machine learning with the estimation of residuals by ordinary kriging, respectively. Environmental variables, including soil properties, climatic, topographic, and remote sensing data, were used for modeling. The mapping results of SOC content from different models were validated by independent testing data based on values of the mean error, root mean squared error and coefficient of determination. The prediction maps depicted spatial variation and patterns of SOC content of the study area. The results showed the accuracy ranking of the compared methods in decreasing order was ANNK, SVR, ANN, GWRK, OK, and GWR. Two-step hybrid approaches performed better than the corresponding individual models, and non-linear models performed better than the linear models. When considering the uncertainty and efficiency, ML and two-step approach are more suitable than geostatistics in regional landscapes with the high heterogeneity. The study concludes that ANNK is a promising approach for mapping SOC content at a local scale.Item National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images(Elsevier, 2020-06) Mao, Dehua; Wang, Zongming; Du, Baojia; Li, Lin; Tian, Yanlin; Jia, Mingming; Zeng, Yuan; Song, Kaishan; Jiang, Ming; Wang, Yeqiao; Earth Sciences, School of ScienceSpatially and thematically explicit information of wetlands is important to understanding ecosystem functions and services, as well as for establishment of management policy and implementation. However, accurate wetland mapping is limited due to lacking an operational classification system and an effective classification approach at a large scale. This study was aimed to map wetlands in China by developing a hybrid object-based and hierarchical classification approach (HOHC) and a new wetland classification system for remote sensing. Application of the hybrid approach and the wetland classification system to Landsat 8 Operational Land Imager data resulted in a wetland map of China with an overall classification accuracy of 95.1%. This national scale wetland map, so named CAS_Wetlands, reveals that China’s wetland area is estimated to be 451,084 ± 2014 km2, of which 70.5% is accounted by inland wetlands. Of the 14 sub-categories, inland marsh has the largest area (152,429 ± 373 km2), while coastal swamp has the smallest coverage (259 ± 15 km2). Geospatial variations in wetland areas at multiple scales indicate that China’s wetlands mostly present in Tibet, Qinghai, Inner Mongolia, Heilongjiang, and Xinjiang Provinces. This new map provides a new baseline data to establish multi-temporal and continuous datasets for China’s wetlands and biodiversity conservation.