- Browse by Author
Browsing by Author "Wang, Xusheng"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Identification of Topological Features in Renal Tumor Microenvironment Associated with Patient Survival(Oxford, 2018-03) Cheng, Jun; Mo, Xiaokui; Wang, Xusheng; Parwani, Anil; Feng, Qianjin; Huang, Kun; Medicine, School of MedicineMotivation As a highly heterogeneous disease, the progression of tumor is not only achieved by unlimited growth of the tumor cells, but also supported, stimulated, and nurtured by the microenvironment around it. However, traditional qualitative and/or semi-quantitative parameters obtained by pathologist’s visual examination have very limited capability to capture this interaction between tumor and its microenvironment. With the advent of digital pathology, computerized image analysis may provide a better tumor characterization and give new insights into this problem. Results We propose a novel bioimage informatics pipeline for automatically characterizing the topological organization of different cell patterns in the tumor microenvironment. We apply this pipeline to the only publicly available large histopathology image dataset for a cohort of 190 patients with papillary renal cell carcinoma obtained from The Cancer Genome Atlas project. Experimental results show that the proposed topological features can successfully stratify early- and middle-stage patients with distinct survival, and show superior performance to traditional clinical features and cellular morphological and intensity features. The proposed features not only provide new insights into the topological organizations of cancers, but also can be integrated with genomic data in future studies to develop new integrative biomarkers.Item Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis(AACR, 2017-11) Cheng, Jun; Zhang, Jie; Han, Yatong; Wang, Xusheng; Ye, Xiufen; Meng, Yuebo; Parwani, Anil; Han, Zhi; Feng, Qianjin; Huang, Kun; Medicine, School of MedicineIn cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas (n = 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers.