- Browse by Author
Browsing by Author "Wang, Tianqi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Engineering chimeric antigen receptor neutrophils from human pluripotent stem cells for targeted cancer immunotherapy(Cell Press, 2022) Chang, Yun; Syahirah, Ramizah; Wang, Xuepeng; Jin, Gyuhyung; Torregrosa-Allen, Sandra; Elzey, Bennett D.; Hummel, Sydney N.; Wang, Tianqi; Li, Can; Lian, Xiaojun; Deng, Qing; Broxmeyer, Hal E.; Bao, Xiaoping; Microbiology and Immunology, School of MedicineNeutrophils, the most abundant white blood cells in circulation, are closely related to cancer development and progression. Healthy primary neutrophils present potent cytotoxicity against various cancer cell lines through direct contact and via generation of reactive oxygen species. However, due to their short half-life and resistance to genetic modification, neutrophils have not yet been engineered with chimeric antigen receptors (CARs) to enhance their antitumor cytotoxicity for targeted immunotherapy. Here, we genetically engineered human pluripotent stem cells with synthetic CARs and differentiated them into functional neutrophils by implementing a chemically defined platform. The resulting CAR neutrophils present superior and specific cytotoxicity against tumor cells both in vitro and in vivo. Collectively, we established a robust platform for massive production of CAR neutrophils, paving the way to myeloid cell-based therapeutic strategies that would boost current cancer-treatment approaches.Item Rora Regulates Neutrophil Migration and Activation in Zebrafish(Frontiers Media, 2022-03-04) Hsu, Alan Y.; Wang, Tianqi; Syahirah, Ramizah; Liu, Sheng; Li, Kailing; Zhang, Weiwei; Wang, Jiao; Cao, Ziming; Tian, Simon; Matosevic, Sandro; Staiger, Christopher J.; Wan, Jun; Deng, Qing; Medical and Molecular Genetics, School of MedicineNeutrophil migration and activation are essential for defense against pathogens. However, this process may also lead to collateral tissue injury. We used microRNA overexpression as a platform and discovered protein-coding genes that regulate neutrophil migration. Here we show that miR-99 decreased the chemotaxis of zebrafish neutrophils and human neutrophil-like cells. In zebrafish neutrophils, miR-99 directly targets the transcriptional factor RAR-related orphan receptor alpha (roraa). Inhibiting RORα, but not the closely related RORγ, reduced chemotaxis of zebrafish and primary human neutrophils without causing cell death, and increased susceptibility of zebrafish to bacterial infection. Expressing a dominant-negative form of Rorα or disrupting the roraa locus specifically in zebrafish neutrophils reduced cell migration. At the transcriptional level, RORα regulates transmembrane signaling receptor activity and protein phosphorylation pathways. Our results, therefore, reveal previously unknown functions of miR-99 and RORα in regulating neutrophil migration and anti-microbial defense.