- Browse by Author
Browsing by Author "Wang, Shuai"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item African dryland ecosystem changes controlled by soil water(Wiley, 2019-08) Wei, Fangli; Wang, Shuai; Fu, Bojie; Wang, Lixin; Liu, Yi Y.; Li, Yan; Earth Sciences, School of ScienceMonitoring long‐term vegetation dynamics in African drylands is of great importance for both ecosystem degradation studies and carbon‐cycle modelling. Here, we exploited the complementary use of optical and passive microwave satellite data— normalized difference vegetation index (NDVI) and vegetation optical depth (VOD)—to provide new insights of ecosystem changes in African drylands. During 1993–2012, 54% of African drylands experienced a significant increase of VOD, mainly located in southern Africa and west and central Africa, with an average rate of increase of (1.2 ± 2.7) × 10−3 yr−1. However, a significant decreasing NDVI was observed over 43% of the African drylands, in particular in western Niger and eastern Africa, with an average browning rate of (−0.13 ± 1.5) × 10−3 yr−1. The contrasting vegetation trends (increasing VOD and decreasing NDVI) were largely caused by an increase in the relative proportion of the woody component of the vegetation, as a result of the prevailing woody encroachment in African drylands during the study period. Soil water emerges as the dominant driver of ecosystem changes in African drylands, in particular in arid and semiarid areas. This is evidenced by a strong spatio‐temporal correlation between soil water and vegetation, where soil water changes explain about 48% of vegetation variations. This study emphasizes the potential of utilizing multiple satellite products with different strengths in monitoring different characteristics of ecosystems to evaluate ecosystem changes and reveal the underlying mechanisms of the observed changes.Item Current and future carbon stocks of natural forests in China(Elsevier, 2022-05-01) Chen, Shiyin; Lu, Nan; Fu, Bojie; Wang, Shuai; Deng, Lei; Wang, Lixin; Earth and Environmental Sciences, School of ScienceNatural regeneration of forests is the most cost-effective and most technically straightforward strategy to mitigate climate change. Natural forests account for 71% of China’s forested area, but their carbon stocks and sequestration potentials remain unclear. Here, we compiled data from 762 natural forest sites across China and found that natural forests had a carbon stock of 9.40 ± 1.45 Pg C in 2010. When naturally regenerated to the over-mature stage, existing natural forests can additionally sequestrate 8.67 ± 6.93 Pg C in the next two centuries, accounting for 48% of the carbon carrying capacity of the natural forest ecosystem in China, i.e. 18.07 ± 6.78 Pg C. Future carbon sequestration potential in natural forests is dominated by the tree layer at 6.88 ± 6.87 Pg, followed by the shrub layer at 1.02 ± 0.55 Pg, floor layer at 0.72 ± 0.74 Pg and herb layer at 0.05 ± 0.10 Pg. The natural forests are expected to achieve 70% of their future carbon sequestration potential by 2100. We also note that assisted regeneration via tree planting can play a significant role in natural forest restoration, as the carbon densities of natural and planted forests are rarely significantly different at the same age under 60 years old. Therefore, the preservation and expansion of natural forests is the key strategy for achieving long-term carbon sequestration.Item Divergent trends of ecosystem-scale photosynthetic efficiency between arid and humid lands across the globe(Wiley, 2022-09) Wei, Fangli; Wang, Shuai; Fu, Bojie; Wang, Lanhui; Zhang, Wenmin; Wang, Lixin; Pan, Ning; Fansholt, Rasmus; Earth and Environmental Sciences, School of ScienceAim Widespread greening and an increasing global terrestrial carbon sink over recent decades have been reported. However, the spatio-temporal relationships between vegetation greenness and productivity and the factors influencing this relationship remain unclear. We define a new metric of ecosystem-scale photosynthetic efficiency (EPE) to analyse its spatio-temporal pattern and investigate how potential drivers regulate the greenness–productivity relationship. Location Global. Time period From 2001 to 2016. Major taxa studied Global terrestrial ecosystems. Methods This study used global datasets of leaf area index (LAI) and solar-induced fluorescence (SIF) as proxies of vegetation greenness and ecosystem productivity, respectively, to propose a new metric of SIF/LAI, representing ecosystem-scale photosynthetic efficiency (EPE). We identified the spatial pattern and dynamics of EPE and examined factors influencing EPE. Results The results showed a weaker increase in productivity compared with the global greening rate from 2001 to 2016, suggesting a decline in EPE at the global scale. This decline in EPE indicates a disproportionate increase in terrestrial productivity against the widespread greening. When stratified into areas following an aridity gradient, we found that EPE overall showed upward trends in arid and semi-arid areas, and downward trends in dry sub-humid and humid regions. The EPE was controlled primarily by soil moisture, which promoted or constrained the EPE in xeric and mesic ecosystems, respectively. Moreover, the increase in short vegetation cover and atmospheric water demand contributed positively or negatively to EPE changes in xeric and mesic ecosystems, respectively. Main conclusions Our study shows that greening of the Earth is associated with decreasing EPE, revealing that current rates of carbon sequestration do not increase proportionally to greening of the Earth and highlighting that soil moisture is a key controller of EPE. These results help to reduce the uncertainties in future climate change impacts on vegetation dynamics, thus having implications for sustainable ecosystem management and climate change mitigation.Item Drylands contribute disproportionately to observed global productivity increases(Elsevier, 2023-01-30) Wang, Shuai; Fu, Bojie; Wei, Fangli; Piao, Shilong; Maestre, Fernando T.; Wang, Lixin; Jiao, Wenzhe; Liu, Yanxu; Li, Yan; Li, Changjia; Zhao, Wenwu; Earth and Environmental Sciences, School of ScienceDrylands cover about 40% of the terrestrial surface and are sensitive to climate change, but their relative contributions to global vegetation greening and productivity increase in recent decades are still poorly known. Here, by integrating satellite data and biosphere modeling, we showed that drylands contributed more to global gross primary productivity (GPP) increase (65% ± 16%) than to Earth greening (33% ± 15%) observed during 1982–2015. The enhanced productivity per unit leaf area, i.e., light-use efficiency (LUE), was the mechanism behind this pattern. We also found that LUE was more sensitive to soil moisture than to atmospheric vapor pressure deficit (VPD) in drylands, while the opposite was observed (i.e., LUE was more sensitive to VPD) in humid areas. Our findings suggest the importance of using different moisture stress metrics in projecting the vegetation productivity changes of dry versus humid regions and highlight the prominent role of drylands as key controllers of the global carbon cycle.Item Enhanced coupling of light use efficiency and water use efficiency in arid and semi-arid environments(Wiley, 2021) Gao, Dexin; Wang, Shuai; Wang, Lixin; Li, Zidong; Pan, Ning; Liu, Yanxu; Fu, Bojie; Earth Sciences, School of ScienceBoth light use efficiency (LUE) and water use efficiency (WUE) play essential roles in ecosystem production. The extent to which ecosystem production is affected by the coupling between LUE and WUE remains unclear. In this study, we used data from flux measurements and weather stations in the Heihe River Basin, China, along a strong climatic gradient to quantify the relationship between LUE and WUE. Variations of LUE explained up to 85% of the variations of WUE. The contribution of LUE to WUE increased with increasing water stress. Pearson’s correlation coefficient between LUE and WUE increased from −0.12 to +0.63 with decreasing LUE. The coordination between LUE and WUE was essential to explaining the insensitive of WUE and GPP with increasing water stress. These results suggest that ecosystems enhance the coordination between light and water use when water stress is high. They enhance our understanding of the drought resilience of ecosystems and reduce uncertainties associated with the carbon cycle in drylands.Item Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility(Nature Publishing Group, 2015-01-29) Wessel, Jennifer; Chu, Audrey Y.; Willems, Sara M.; Wang, Shuai; Yaghootkar, Hanieh; Brody, Jennifer A.; Dauriz, Marco; Hivert, Marie-France; Raghavan, Sridharan; Lipovich, Leonard; Hidalgo, Bertha; Fox, Keolu; Huffman, Jennifer E.; An, Ping; Lu, Yingchang; Rasmussen-Torvik, Laura J.; Grarup, Niels; Ehm, Margaret G.; Li, Li; Baldridge, Abigail S.; Stančáková, Alena; Abrol, Ravinder; Besse, Céline; Boland, Anne; Bork-Jensen, Jette; Fornage, Myriam; Freitag, Daniel F.; Garcia, Melissa E.; Guo, Xiuqing; Hara, Kazuo; Isaacs, Aaron; Jakobsdottir, Johanna; Lange, Leslie A.; Layton, Jill C.; Li, Man; Hua Zhao, Jing; Meidtner, Karina; Morrison, Alanna C.; Nalls, Mike A.; Peters, Marjolein J.; Sabater-Lleal, Maria; Schurmann, Claudia; Silveira, Angela; Smith, Albert V.; Southam, Lorraine; Stoiber, Marcus H.; Strawbridge, Rona J.; Taylor, Kent D.; Varga, Tibor V.; Allin, Kristine H.; Amin, Najaf; Aponte, Jennifer L.; Aung, Tin; Barbieri, Caterina; Bihlmeyer, Nathan A.; Boehnke, Michael; Bombieri, Cristina; Bowden, Donald W.; Burns, Sean M.; Chen, Yuning; Chen, Yii-DerI; Cheng, Ching-Yu; Correa, Adolfo; Czajkowski, Jacek; Dehghan, Abbas; Ehret, Georg B.; Eiriksdottir, Gudny; Escher, Stefan A.; Farmaki, Aliki-Eleni; Frånberg, Mattias; Gambaro, Giovanni; Giulianini, Franco; Goddard, William A.; Goel, Anuj; Gottesman, Omri; Grove, Megan L.; Gustafsson, Stefan; Hai, Yang; Hallmans, Göran; Heo, Jiyoung; Hoffmann, Per; Ikram, Mohammad K.; Jensen, Richard A.; Jørgensen, Marit E.; Jørgensen, Torben; Karaleftheri, Maria; Khor, Chiea C.; Kirkpatrick, Andrea; Kraja, Aldi T.; Kuusisto, Johanna; Lange, Ethan M.; Lee, I. T.; Lee, Wen-Jane; Leong, Aaron; Liao, Jiemin; Liu, Chunyu; Liu, Yongmei; Lindgren, Cecilia M.; Linneberg, Allan; Malerba, Giovanni; Mamakou, Vasiliki; Marouli, Eirini; Maruthur, Nisa M.; Matchan, Angela; McKean-Cowdin, Roberta; McLeod, Olga; Metcalf, Ginger A.; Mohlke, Karen L.; Muzny, Donna M.; Ntalla, Ioanna; Palmer, Nicholette D.; Pasko, Dorota; Peter, Andreas; Rayner, Nigel W.; Renström, Frida; Rice, Ken; Sala, Cinzia F.; Sennblad, Bengt; Serafetinidis, Ioannis; Smith, Jennifer A.; Soranzo, Nicole; Speliotes, Elizabeth K.; Stahl, Eli A.; Stirrups, Kathleen; Tentolouris, Nikos; Thanopoulou, Anastasia; Torres, Mina; Traglia, Michela; Tsafantakis, Emmanouil; Javad, Sundas; Yanek, Lisa R.; Zengini, Eleni; Becker, Diane M.; Bis, Joshua C.; Brown, James B.; Adrienne Cupples, L.; Hansen, Torben; Ingelsson, Erik; Karter, Andrew J.; Lorenzo, Carlos; Mathias, Rasika A.; Norris, Jill M.; Peloso, Gina M.; Sheu, Wayne H.-H.; Toniolo, Daniela; Vaidya, Dhananjay; Varma, Rohit; Wagenknecht, Lynne E.; Boeing, Heiner; Bottinger, Erwin P.; Dedoussis, George; Deloukas, Panos; Ferrannini, Ele; Franco, Oscar H.; Franks, Paul W.; Gibbs, Richard A.; Gudnason, Vilmundur; Hamsten, Anders; Harris, Tamara B.; Hattersley, Andrew T.; Hayward, Caroline; Hofman, Albert; Jansson, Jan-Håkan; Langenberg, Claudia; Launer, Lenore J.; Levy, Daniel; Oostra, Ben A.; O'Donnell, Christopher J.; O'Rahilly, Stephen; Padmanabhan, Sandosh; Pankow, James S.; Polasek, Ozren; Province, Michael A.; Rich, Stephen S.; Ridker, Paul M.; Rudan, Igor; Schulze, Matthias B.; Smith, Blair H.; Uitterlinden, André G.; Walker, Mark; Watkins, Hugh; Wong, Tien Y.; Zeggini, Eleftheria; Laakso, Markku; Borecki, Ingrid B.; Chasman, Daniel I.; Pedersen, Oluf; Psaty, Bruce M.; Shyong Tai, E.; van Duijn, Cornelia M.; Wareham, Nicholas J.; Waterworth, Dawn M.; Boerwinkle, Eric; Linda Kao, W. H.; Florez, Jose C.; Loos, Ruth J. F.; Wilson, James G.; Frayling, Timothy M.; Siscovick, David S.; Dupuis, Josée; Rotter, Jerome I.; Meigs, James B.; Scott, Robert A.; Goodarzi, Mark O.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthFasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=−0.09±0.01 mmol l−1, P=3.4 × 10−12), T2D risk (OR[95%CI]=0.86[0.76–0.96], P=0.010), early insulin secretion (β=−0.07±0.035 pmolinsulin mmolglucose−1, P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l−1, P=4.3 × 10−4). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10−6) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l−1, P=1.3 × 10−8). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.Item Responses and feedbacks of African dryland ecosystems to environmental changes(Elsevier, 2021-02) Wei, Fangli; Wang, Shuai; Brandt, Martin; Fu, Bojie; Meadows, Michael E.; Wang, Lixin; Wang, Lanhui; Tong, Xiaowei; Fensholt, Rasmus; Earth Sciences, School of ScienceDrylands occupy 43% of the African continent and play an important role in the global carbon cycle and in supporting local livelihoods. Understanding how dryland ecosystems respond to environmental changes, both structurally and functionally, is of great significance for sustainable dryland management. In this article, we review the current remote sensing-based knowledge on African dryland ecosystem dynamics and the main drivers of changes. Global CO2 enrichment, changes in rainfall regimes, and a decline in fire activity have collectively driven vegetation greening, woody plant increase and carbon dynamics in African drylands over recent decades, challenging the long-held desertification narrative. Here we also highlight the importance of rainfall–vegetation–fire feedbacks in enhancing dryland ecosystem resilience and predicting future ecosystem responses.Item The expression profile and tumorigenic mechanisms of CD97 (ADGRE5) in glioblastoma render it a targetable vulnerability(Elsevier, 2023) Ravn-Boess, Niklas; Roy, Nainita; Hattori, Takamitsu; Bready, Devin; Donaldson, Hayley; Lawson, Christopher; Lapierre, Cathryn; Korman, Aryeh; Rodrick, Tori; Liu, Enze; Frenster, Joshua D.; Stephan, Gabriele; Wilcox, Jordan; Corrado, Alexis D.; Cai, Julia; Ronnen, Rebecca; Wang, Shuai; Haddock, Sara; Ortiz, Jonathan Sabio; Mishkit, Orin; Khodadadi-Jamayran, Alireza; Tsirigos, Aris; Fenyö, David; Zagzag, David; Drube, Julia; Hoffmann, Carsten; Perna, Fabiana; Jones, Drew R.; Possemato, Richard; Koide, Akiko; Koide, Shohei; Park, Christopher Y.; Placantonakis, Dimitris G.; Medicine, School of MedicineGlioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their potential as treatment targets. Here, we show that CD97 (ADGRE5) is the most promising aGPCR target in GBM, by virtue of its de novo expression compared to healthy brain tissue. CD97 knockdown or knockout significantly reduces the tumor initiation capacity of patient-derived GBM cultures (PDGCs) in vitro and in vivo. We find that CD97 promotes glycolytic metabolism via the mitogen-activated protein kinase (MAPK) pathway, which depends on phosphorylation of its C terminus and recruitment of β-arrestin. We also demonstrate that THY1/CD90 is a likely CD97 ligand in GBM. Lastly, we show that an anti-CD97 antibody-drug conjugate selectively kills tumor cells in vitro. Our studies identify CD97 as a regulator of tumor metabolism, elucidate mechanisms of receptor activation and signaling, and provide strong scientific rationale for developing biologics to target it therapeutically in GBM.Item The vulnerability of ecosystem structure in the semi-arid area revealed by the functional trait networks(Elsevier, 2022-06) Gao, Dexin; Wang, Shuai; Wei, Fangli; Wu, Xutong; Zhou, Sha; Wang, Lixin; Li, Zidong; Chen, Peng; Fu, Bojie; Earth and Environmental Sciences, School of ScienceThe ecosystems were characterized by complex, nonlinear interactions determined by different plant functional traits. The characteristics of the multiple relationships between ecosystem functional traits affected the vulnerability to drought. A three-level network analysis on instead of the network metrics, relationships among inter-components, and essential traits was conducted in dryland ecosystems of China. The new network of functional traits included leaf, root, and biomass components was constructed to simulate different aridity conditions. Results show that the multiple relationships of functional traits that co-regulated ecosystem biomass differ along an aridity gradient. The highest network modularity and degree centrality were observed in the semi-arid ecosystems indicating low integration and high sensitivity of semi-arid ecosystems (269% and 23.7% higher than in dry sub-humid site, and 142% and 51.1% higher than arid sites). The leaf quantity strongly affected the connection between functional traits at the semi-arid zone. The semi-arid areawas found to have relatively low resistance to environmental change because of low integration and high sensitivity of the ecosystem structure at that site. An increase of degree centrality of the root traits and trade-off relationships between roots and leaves indicated greater allocation of resources by vecgetation to underground components by the arid ecosystems to increase water absorption. The study reveals the complex relationships between leaf, root, and biomass components, and the essential traits of the ecosystem. It enhanced understanding of the vulnerability of semi-arid ecosystems to environmental change.Item Threshold of vapour–pressure deficit constraint on light use efficiency varied with soil water content(Wiley, 2022-07) Gao, Dexin; Wang, Shuai; Li, Zidong; Wei, Fangli; Chen, Peng; Song, Shuang; Wang, Yaping; Wang, Lixin; Fu, Bojie; Earth Sciences, School of ScienceUnderstanding the constraints on light-use efficiency (LUE) induced by high evaporative water demand (vapour–pressure deficit; VPD) and soil water stress (soil moisture content; SMC) is crucial for understanding and simulating vegetation productivity, particularly in the arid and semi-arid regions. However, the relative impacts of VPD and SMC on LUE are unclear, as we lack a mechanistic understanding of impacts and their interactions. In this study, we quantified the relative roles of VPD and SMC in limiting LUE and analysed the interactions among VPD, SMC and LUE using data from CO2 and water flux stations and weather stations along a climatic gradient in the Heihe River Basin, China. We found a threshold of VPD constraint on LUE; above the threshold, LUE decreased at only 3.6% to 23.1% of the rate below the threshold. As SMC decreased, however, the VPD threshold increased, and the reduction of LUE caused by VPD decreased significantly, which is more than half of that in moister regions. Therefore, both VPD and SMC played essential roles in LUE limitation caused by water stress. A threshold also existed for heat flux and the correlation between SMC and LUE; the strength of the correlation first decreased and then increased with increasing VPD. Our results clarified the relative impacts of VPD and SMC on LUE, and can improve simulation and prediction of plant productivity.