- Browse by Author
Browsing by Author "Wang, Ruizhong"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item A human skeletal muscle stem/myotube model reveals multiple signaling targets of cancer secretome in skeletal muscle(Elsevier, 2023-03-31) Wang, Ruizhong; Kumar, Brijesh; Bhat-Nakshatri, Poornima; Khatpe, Aditi S.; Murphy, Michael P.; Wanczyk, Kristen E.; Simpson, Edward; Chen, Duojiao; Gao, Hongyu; Liu, Yunlong; Doud, Emma H.; Mosley, Amber L.; Nakshatri, Harikrishna; Surgery, School of MedicineSkeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes. Using single nuclei ATAC-seq (snATAC-seq) and RNA-seq (snRNA-seq), we document chromatin accessibility and transcriptomic changes associated with the transition of hMuSCs to myotubes. Cancer secretome accelerated stem to myotube differentiation, altered the alternative splicing machinery and increased inflammatory, glucocorticoid receptor, and wound healing pathways in hMuSCs. Additionally, cancer secretome reduced metabolic and survival pathway associated miR-486, AKT, and p53 signaling in hMuSCs. hMuSCs underwent myotube differentiation when engrafted into NSG mice and thus providing a humanized in vivo skeletal muscle model system to study cancer cachexia.Item Aging-associated skeletal muscle defects in HER2/Neu transgenic mammary tumor model(Wiley, 2021) Wang, Ruizhong; Kumar, Brijesh; Bhat-Nakshatri, Poornima; Prasad, Mayuri S.; Jacobsen, Max H.; Ovalle, Gabriela; Maguire, Calli; Sandusky, George; Trivedi, Trupti; Mohammad, Khalid S.; Guise, Theresa; Penthala, Narsimha R.; Crooks, Peter A.; Liu, Jianguo; Zimmers, Teresa; Nakshatri, Harikrishna; Surgery, School of MedicineBackground: Loss of skeletal muscle volume and resulting in functional limitations are poor prognostic markers in breast cancer patients. Several molecular defects in skeletal muscle including reduced MyoD levels and increased protein turn over due to enhanced proteosomal activity have been suggested as causes of skeletal muscle loss in cancer patients. However, it is unknown whether molecular defects in skeletal muscle are dependent on tumor etiology. Methods: We characterized functional and molecular defects of skeletal muscle in MMTV-Neu (Neu+) mice (n= 6-12), an animal model that represents HER2+ human breast cancer, and compared the results with well-characterized luminal B breast cancer model MMTV-PyMT (PyMT+). Functional studies such as grip strength, rotarod performance, and ex vivo muscle contraction were performed to measure the effects of cancer on skeletal muscle. Expression of muscle-enriched genes and microRNAs as well as circulating cytokines/chemokines were measured. Since NF-κB pathway plays a significant role in skeletal muscle defects, the ability of NF-κB inhibitor dimethylaminoparthenolide (DMAPT) to reverse skeletal muscle defects was examined. Results: Neu+ mice showed skeletal muscle defects similar to accelerated aging. Compared to age and sex-matched wild type mice, Neu+ tumor-bearing mice had lower grip strength (202±6.9 vs. 179±6.8 g grip force, p=0.0069) and impaired rotarod performance (108±12.1 vs. 30±3.9 seconds, P<0.0001), which was consistent with reduced muscle contractibility (p<0.0001). Skeletal muscle of Neu+ mice (n=6) contained lower levels of CD82+ (16.2±2.9 vs 9.0±1.6) and CD54+ (3.8±0.5 vs 2.4±0.4) muscle stem and progenitor cells (p<0.05), suggesting impaired capacity of muscle regeneration, which was accompanied by decreased MyoD, p53 and miR-486 expression in muscles (p<0.05). Unlike PyMT+ mice, which showed skeletal muscle mitochondrial defects including reduced mitochondria levels and Pgc1β, Neu+ mice displayed accelerated aging-associated changes including muscle fiber shrinkage and increased extracellular matrix deposition. Circulating "aging factor" and cachexia and fibromyalgia-associated chemokine Ccl11 was elevated in Neu+ mice (1439.56±514 vs. 1950±345 pg/ml, p<0.05). Treatment of Neu+ mice with DMAPT significantly restored grip strength (205±6 g force), rotarod performance (74±8.5 seconds), reversed molecular alterations associated with skeletal muscle aging, reduced circulating Ccl11 (1083.26 ±478 pg/ml), and improved animal survival. Conclusions: These results suggest that breast cancer subtype has a specific impact on the type of molecular and structure changes in skeletal muscle, which needs to be taken into consideration while designing therapies to reduce breast cancer-induced skeletal muscle loss and functional limitations.Item Aromatase inhibitors augment nociceptive behaviors in rats and enhance the excitability of sensory neurons(Elsevier, 2016-07) Robarge, Jason D.; Duarte, Djane B.; Shariat, Behzad; Wang, Ruizhong; Flockhart, David A.; Vasko, Michael R.; Pharmacology and Toxicology, School of MedicineAlthough aromatase inhibitors (AIs) are commonly used therapies for breast cancer, their use is limited because they produce arthralgia in a large number of patients. To determine whether AIs produce hypersensitivity in animal models of pain, we examined the effects of the AI, letrozole, on mechanical, thermal, and chemical sensitivity in rats. In ovariectomized (OVX) rats, administering a single dose of 1 or 5mg/kg letrozole significantly reduced mechanical paw withdrawal thresholds, without altering thermal sensitivity. Repeated injection of 5mg/kg letrozole in male rats produced mechanical, but not thermal, hypersensitivity that extinguished when drug dosing was stopped. A single dose of 5mg/kg letrozole or daily dosing of letrozole or exemestane in male rats also augmented flinching behavior induced by intraplantar injection of 1000nmol of adenosine 5'-triphosphate (ATP). To determine whether sensitization of sensory neurons contributed to AI-induced hypersensitivity, we evaluated the excitability of neurons isolated from dorsal root ganglia of male rats chronically treated with letrozole. Both small and medium-diameter sensory neurons isolated from letrozole-treated rats were more excitable, as reflected by increased action potential firing in response to a ramp of depolarizing current, a lower resting membrane potential, and a lower rheobase. However, systemic letrozole treatment did not augment the stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP) from spinal cord slices, suggesting that the enhanced nociceptive responses were not secondary to an increase in peptide release from sensory endings in the spinal cord. These results provide the first evidence that AIs modulate the excitability of sensory neurons, which may be a primary mechanism for the effect of these drugs to augment pain behaviors in rats.Item Erratum: Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations(Elsevier, 2022-08-20) Wang, Ruizhong; Kumar, Brijesh; Doud, Emma H.; Mosley, Amber L.; Alexander, Matthew S.; Kunkel, Louis M.; Nakshatri, Harikrishna; Surgery, School of Medicine[This corrects the article DOI: 10.1016/j.omtn.2022.03.009.].Item Hormonally Regulated Myogenic miR-486 Influences Sex-specific Differences in Cancer-induced Skeletal Muscle Defects(Endocrine Society, 2022-09-01) Wang, Ruizhong; Bhat-Nakshatri, Poornima; Zhong, Xiaoling; Zimmers, Teresa; Nakshatri, Harikrishna; Surgery, School of MedicineCancer-induced skeletal muscle defects show sex-specific differences in severity with men performing poorly compared to women. Hormones and sex chromosomal differences are suggested to mediate these differences, but the functional skeletal muscle markers to document these differences are unknown. We show that the myogenic microRNA miR-486 is a marker of sex-specific differences in cancer-induced skeletal muscle defects. Cancer-induced loss of circulating miR-486 was more severe in men with bladder, lung, and pancreatic cancers compared to women with the same cancer types. In a syngeneic model of pancreatic cancer, circulating and skeletal muscle loss of miR-486 was more severe in male mice compared to female mice. Estradiol (E2) and the clinically used selective estrogen receptor modulator toremifene increased miR-486 in undifferentiated and differentiated myoblast cell line C2C12 and E2-inducible expression correlated with direct binding of estrogen receptor alpha (ERα) to the regulatory region of the miR-486 gene. E2 and toremifene reduced the actions of cytokines such as myostatin, transforming growth factor β, and tumor necrosis factor α, which mediate cancer-induced skeletal muscle wasting. E2- and toremifene-treated C2C12 myoblast/myotube cells contained elevated levels of active protein kinase B (AKT) with a corresponding decrease in the levels of its negative regulator PTEN, which is a target of miR-486. We propose an ERα:E2-miR-486-AKT signaling axis, which reduces the deleterious effects of cancer-induced cytokines/chemokines on skeletal muscle mass and/or function.Item Inflammation-associated microRNA changes in circulating exosomes of heart failure patients(BMC, 2017-12-19) Beg, Faheemullah; Wang, Ruizhong; Saeed, Zeb; Devaraj, Srikant; Masoor, Kamalesh; Nakshatri, Harikrishna; Surgery, School of MedicineObjective MiR-486 and miR-146a are cardiomyocyte-enriched microRNAs that control cell survival and self-regulation of inflammation. These microRNAs are released into circulation and are detected in plasma or in circulating exosomes. Little is known whether heart failure affects their release into circulation, which this study investigated. Results Total and exosome-specific microRNAs in plasma of 40 heart failure patients and 20 controls were prepared using the miRVana Kit. We measured exosomal and total plasma microRNAs separately because exosomes serve as cargos that transfer biological materials and alter signaling in distant organs, whereas microRNAs in plasma indicate the level of tissue damage and are mostly derived from dead cells. qRT-PCR was used to quantify miR-486, miR-146a, and miR-16. Heart failure did not significantly affect plasma miR-486/miR-16 and miR-146a/miR-16 ratio, although miR-146a/miR-16 showed a trend of elevated expression (2.3 ± 0.79, p = 0.27). By contrast, circulating exosomal miR-146a/miR-16 ratio was higher in heart failure patients (2.46 ± 0.51, p = 0.05). miR-146a is induced in response to inflammation as a part of inflammation attenuation circuitry. Indeed, Tnfα and Gm-csf increased miR-146a but not miR-486 in the cardiomyocyte cell line H9C2. These results, if confirmed in a larger study, may help to develop circulating exosomal miR-146a as a biomarker of heart failure.Item Mutant RAS-driven Secretome Causes Skeletal Muscle Defects in Breast Cancer(American Association for Cancer Research, 2024) Wang, Ruizhong; Khatpe, Aditi S.; Kumar, Brijesh; Mang, Henry Elmer; Batic, Katie; Adebayo, Adedeji K.; Nakshatri, Harikrishna; Surgery, School of MedicineCancer-induced skeletal muscle defects differ in severity between individuals with the same cancer type. Cancer subtype-specific genomic aberrations are suggested to mediate these differences, but experimental validation studies are very limited. We utilized three different breast cancer patient-derived xenograft (PDX) models to correlate cancer subtype with skeletal muscle defects. PDXs were derived from brain metastasis of triple-negative breast cancer (TNBC), estrogen receptor-positive/progesterone receptor-positive (ER+/PR+) primary breast cancer from a BRCA2-mutation carrier, and pleural effusion from an ER+/PR- breast cancer. While impaired skeletal muscle function as measured through rotarod performance and reduced levels of circulating and/or skeletal muscle miR-486 were common across all three PDXs, only TNBC-derived PDX activated phospho-p38 in skeletal muscle. To further extend these results, we generated transformed variants of human primary breast epithelial cells from healthy donors using HRASG12V or PIK3CAH1047R mutant oncogenes. Mutations in RAS oncogene or its modulators are found in approximately 37% of metastatic breast cancers, which is often associated with skeletal muscle defects. Although cells transformed with both oncogenes generated adenocarcinomas in NSG mice, only HRASG12V-derived tumors caused skeletal muscle defects affecting rotarod performance, skeletal muscle contraction force, and miR-486, Pax7, pAKT, and p53 levels in skeletal muscle. Circulating levels of the chemokine CXCL1 were elevated only in animals with tumors containing HRASG12V mutation. Because RAS pathway aberrations are found in 19% of cancers, evaluating skeletal muscle defects in the context of genomic aberrations in cancers, particularly RAS pathway mutations, may accelerate development of therapeutic modalities to overcome cancer-induced systemic effects. Significance: Mutant RAS- and PIK3CA-driven breast cancers distinctly affect the function of skeletal muscle. Therefore, research and therapeutic targeting of cancer-induced systemic effects need to take aberrant cancer genome into consideration.Item Navβ4 regulates fast resurgent sodium currents and excitability in sensory neurons(Springer (Biomed Central Ltd.), 2015) Barbosa, Cindy; Tan, Zhi-Yong; Wang, Ruizhong; Xie, Wenrui; Strong, Judith A.; Patel, Reesha R.; Vasko, Michael R.; Zhang, Jun-Ming; Cummins, Theodore R.; Department of Pharmacology and Toxicology, IU School of MedicineBACKGROUND: Increased electrical activity in peripheral sensory neurons including dorsal root ganglia (DRG) and trigeminal ganglia neurons is an important mechanism underlying pain. Voltage gated sodium channels (VGSC) contribute to the excitability of sensory neurons and are essential for the upstroke of action potentials. A unique type of VGSC current, resurgent current (INaR), generates an inward current at repolarizing voltages through an alternate mechanism of inactivation referred to as open-channel block. INaRs are proposed to enable high frequency firing and increased INaRs in sensory neurons are associated with pain pathologies. While Nav1.6 has been identified as the main carrier of fast INaR, our understanding of the mechanisms that contribute to INaR generation is limited. Specifically, the open-channel blocker in sensory neurons has not been identified. Previous studies suggest Navβ4 subunit mediates INaR in central nervous system neurons. The goal of this study was to determine whether Navβ4 regulates INaR in DRG sensory neurons. RESULTS: Our immunocytochemistry studies show that Navβ4 expression is highly correlated with Nav1.6 expression predominantly in medium-large diameter rat DRG neurons. Navβ4 knockdown decreased endogenous fast INaR in medium-large diameter neurons as measured with whole-cell voltage clamp. Using a reduced expression system in DRG neurons, we isolated recombinant human Nav1.6 sodium currents in rat DRG neurons and found that overexpression of Navβ4 enhanced Nav1.6 INaR generation. By contrast neither overexpression of Navβ2 nor overexpression of a Navβ4-mutant, predicted to be an inactive form of Navβ4, enhanced Nav1.6 INaR generation. DRG neurons transfected with wild-type Navβ4 exhibited increased excitability with increases in both spontaneous activity and evoked activity. Thus, Navβ4 overexpression enhanced INaR and excitability, whereas knockdown or expression of mutant Navβ4 decreased INaR generation. CONCLUSION: INaRs are associated with inherited and acquired pain disorders. However, our ability to selectively target and study this current has been hindered due to limited understanding of how it is generated in sensory neurons. This study identified Navβ4 as an important regulator of INaR and excitability in sensory neurons. As such, Navβ4 is a potential target for the manipulation of pain sensations.Item Pharmacological Dual Inhibition of Tumor and Tumor-Induced Functional Limitations in a Transgenic Model of Breast Cancer(American Association for Cancer Research, 2017-12) Wang, Ruizhong; Bhat-Nakshatri, Poornima; Padua, Maria B.; Prasad, Mayuri S.; Anjanappa, Manjushree; Jacobson, Max; Finnearty, Courtney; Sefcsik, Victoria; McElyea, Kyle; Redmond, Rachael; Sandusky, George; Penthala, Narsimha; Crooks, Peter A.; Liu, Jianguo; Zimmers, Teresa A.; Nakshatri, Harikrishna; Surgery, School of MedicineBreast cancer progression is associated with systemic effects, including functional limitations and sarcopenia without the appearance of overt cachexia. Autocrine/paracrine actions of cytokines/chemokines produced by cancer cells mediate cancer progression and functional limitations. The cytokine-inducible transcription factor NF-κB could be central to this process, as it displays oncogenic functions and is integral to the Pax7:MyoD:Pgc-1β:miR-486 myogenesis axis. We tested this possibility using the MMTV-PyMT transgenic mammary tumor model and the NF-κB inhibitor dimethylaminoparthenolide (DMAPT). We observed deteriorating physical and functional conditions in PyMT+ mice with disease progression. Compared with wild-type mice, tumor-bearing PyMT+ mice showed decreased fat mass, impaired rotarod performance, and reduced grip strength as well as increased extracellular matrix (ECM) deposition in muscle. Contrary to acute cachexia models described in the literature, mammary tumor progression was associated with reduction in skeletal muscle stem/satellite-specific transcription factor Pax7. Additionally, we observed tumor-induced reduction in Pgc-1β in muscle, which controls mitochondrial biogenesis. DMAPT treatment starting at 6 to 8 weeks age prior to mammary tumor occurrence delayed mammary tumor onset and tumor growth rates without affecting metastasis. DMAPT overcame cancer-induced functional limitations and improved survival, which was accompanied with restoration of Pax7, Pgc-1β, and mitochondria levels and reduced ECM levels in skeletal muscles. In addition, DMAPT restored circulating levels of 6 out of 13 cancer-associated cytokines/chemokines changes to levels seen in healthy animals. These results reveal a pharmacological approach for overcoming cancer-induced functional limitations, and the above-noted cancer/drug-induced changes in muscle gene expression could be utilized as biomarkers of functional limitations.Item Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations(Elsevier, 2022-03-16) Wang, Ruizhong; Kumar, Brijesh; Doud, Emma H.; Mosley, Amber L.; Alexander, Matthew S.; Kunkel, Louis M.; Nakshatri, Harikrishna; Surgery, School of MedicinemiR-486 is a myogenic microRNA, and its reduced skeletal muscle expression is observed in muscular dystrophy. Transgenic overexpression of miR-486 using muscle creatine kinase promoter (MCK-miR-486) partially rescues muscular dystrophy phenotype. We had previously demonstrated reduced circulating and skeletal muscle miR-486 levels with accompanying skeletal muscle defects in mammary tumor models. To determine whether skeletal muscle miR-486 is functionally similar in dystrophies and cancer, we performed functional limitations and biochemical studies of skeletal muscles of MMTV-Neu mice that mimic HER2+ breast cancer and MMTV-PyMT mice that mimic luminal subtype B breast cancer and these mice crossed to MCK-miR-486 mice. miR-486 significantly prevented tumor-induced reduction in muscle contraction force, grip strength, and rotarod performance in MMTV-Neu mice. In this model, miR-486 reversed cancer-induced skeletal muscle changes, including loss of p53, phospho-AKT, and phospho-laminin alpha 2 (LAMA2) and gain of hnRNPA0 and SRSF10 phosphorylation. LAMA2 is a part of the dystrophin-associated glycoprotein complex, and its loss of function causes congenital muscular dystrophy. Complementing these beneficial effects on muscle, miR-486 indirectly reduced tumor growth and improved survival, which is likely due to systemic effects of miR-486 on production of pro-inflammatory cytokines such as IL-6. Thus, similar to dystrophy, miR-486 has the potential to reverse skeletal muscle defects and cancer burden.