- Browse by Author
Browsing by Author "Wang, Qianben"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chromatin-associated APC regulates gene expression in collaboration with canonical WNT signaling and AP-1(Impact Journals, 2018-07-27) Hankey, William; Chen, Zhong; Bergman, Maxwell J.; Fernandez, Max O.; Hancioglu, Baris; Lan, Xun; Jegga, Anil G.; Zhang, Jie; Jin, Victor X.; Aronow, Bruce J.; Wang, Qianben; Groden, Joanna; Medical and Molecular Genetics, School of MedicineMutation of the APC gene occurs in a high percentage of colorectal tumors and is a central event driving tumor initiation in the large intestine. The APC protein performs multiple tumor suppressor functions including negative regulation of the canonical WNT signaling pathway by both cytoplasmic and nuclear mechanisms. Published reports that APC interacts with β-catenin in the chromatin fraction to repress WNT-activated targets have raised the possibility that chromatin-associated APC participates more broadly in mechanisms of transcriptional control. This screening study has used chromatin immunoprecipitation and next-generation sequencing to identify APC-associated genomic regions in colon cancer cell lines. Initial target selection was performed by comparison and statistical analysis of 3,985 genomic regions associated with the APC protein to whole transcriptome sequencing data from APC-deficient and APC-wild-type colon cancer cells, and two types of murine colon adenomas characterized by activated Wnt signaling. 289 transcripts altered in expression following APC loss in human cells were linked to APC-associated genomic regions. High-confidence targets additionally validated in mouse adenomas included 16 increased and 9 decreased in expression following APC loss, indicating that chromatin-associated APC may antagonize canonical WNT signaling at both WNT-activated and WNT-repressed targets. Motif analysis and comparison to ChIP-seq datasets for other transcription factors identified a prevalence of binding sites for the TCF7L2 and AP-1 transcription factors in APC-associated genomic regions. Our results indicate that canonical WNT signaling can collaborate with or antagonize the AP-1 transcription factor to fine-tune the expression of shared target genes in the colorectal epithelium. Future therapeutic strategies for APC-deficient colorectal cancers might be expanded to include agents targeting the AP-1 pathway.Item Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer(Oxford University Press, 2014) Wu, Dayong; Sunkel, Benjamin; Chen, Zhong; Liu, Xiangtao; Ye, Zhenqing; Li, Qianjin; Grenade, Cassandra; Ke, Jingdong; Zhang, Chunpeng; Chen, Hongyan; Nephew, Kenneth P.; Huang, Tim H.-M.; Liu, Zhihua; Jin, Victor X.; Wang, Qianben; Cellular and Integrative Physiology, School of MedicineIn prostate cancer, androgen receptor (AR) binding and androgen-responsive gene expression are defined by hormone-independent binding patterns of the pioneer factors FoxA1 and GATA2. Insufficient evidence of the mechanisms by which GATA2 contributes to this process precludes complete understanding of a key determinant of tissue-specific AR activity. Our observations suggest that GATA2 facilitates androgen-responsive gene expression by three distinct modes of action. By occupying novel binding sites within the AR gene locus, GATA2 positively regulates AR expression before and after androgen stimulation. Additionally, GATA2 engages AR target gene enhancers prior to hormone stimulation, producing an active and accessible chromatin environment via recruitment of the histone acetyltransferase p300. Finally, GATA2 functions in establishing and/or sustaining basal locus looping by recruiting the Mediator subunit MED1 in the absence of androgen. These mechanisms may contribute to the generally positive role of GATA2 in defining AR genome-wide binding patterns that determine androgen-responsive gene expression profiles. We also find that GATA2 and FoxA1 exhibit both independent and codependent co-occupancy of AR target gene enhancers. Identifying these determinants of AR transcriptional activity may provide a foundation for the development of future prostate cancer therapeutics that target pioneer factor function.