- Browse by Author
Browsing by Author "Wang, Qian"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item A Case Series of Persistent SARS-CoV-2 Infection in Immunocompromised Pediatric Patients(Hindawi, 2023-05-16) Ahmed, Mohamed Y.; Taylor, Jane B.; Aneja, Rajesh K.; Wang, Qian; Williams, John V.; Pediatrics, School of MedicineDiagnosis and management of SARS-CoV-2 infection in immunocompromised patients are extremely challenging. These patients can have atypical clinical courses, and there is a paucity of data regarding clinical features, diagnostic findings, and the safety and efficacy of available therapeutic agents used to treat COVID-19 in these patients. In this case series, we report atypical COVID-19 presentations in 4 immunocompromised pediatric patients who were admitted with acute respiratory failure after an initial diagnosis of COVID-19 a few weeks earlier. All patients included in this cohort showed persistent worsening respiratory symptoms for several weeks before hospital presentation. While they manifested common COVID-19 sequelae, they also had rare COVID-19-related pathognomonic and radiographic features developed along their hospital course. Multiple therapeutic agents were used in their COVID-19 management, including corticosteroids, remdesivir, and monoclonal antibodies. All three patients who have received concurrent therapy with remdesivir, hydrocortisone, and monoclonal antibodies survived, and only one patient died as a direct complication of COVID-19 ARDS with secondary pulmonary mucormycosis. Our outcomes suggest the potential benefit of remdesivir use in combination with hydrocortisone and monoclonal antibodies in the management of severe COVID-19 ARDS in this group, as well as the importance of close surveillance and early administration of broad empirical antimicrobial and antifungal coverage if clinically indicated in this high-risk population.Item APOE, TOMM40, and Sex Interactions on Neural Network Connectivity(Elsevier, 2022) Li, Tianqi; Pappas, Colleen; Le, Scott T.; Wang, Qian; Klinedinst, Brandon S.; Larsen, Brittany; Pollpeter, Amy; Lee, Ling Yi; Lutz, Mike W.; Gottschalk, William K.; Swerdlow, Russell H.; Nho, Kwangsik; Willette, Auriel A.; Radiology and Imaging Sciences, School of MedicineThe Apolipoprotein E ε4 (APOE ε4) haplotype is the strongest genetic risk factor for late-onset Alzheimer‟s disease (AD). The Translocase of Outer Mitochondrial Membrane-40 (TOMM40) gene maintains cellular bioenergetics, which is disrupted in AD. TOMM40 rs2075650 (‘650) G vs. A carriage is consistently related to neural and cognitive outcomes, but it is unclear if and how it interacts with APOE. We examined 21 orthogonal neural networks among 8,222 middle-aged to aged participants in the UK Biobank cohort. ANOVA and multiple linear regression tested main effects and interactions with APOE and TOMM40 ‘650 genotypes, and if age and sex acted as moderators. APOE ε4 was associated with less strength in multiple networks, while ‘650 G vs. A carriage was related to more language comprehension network strength. In APOE ε4 carriers, ‘650 G-carriage led to less network strength with increasing age, while in non G-carriers this was only seen in women but not men. TOMM40 may shift what happens to network activity in aging APOE ε4 carriers depending on sex.Item BadR directly represses the expression of the glycerol utilization operon in the Lyme disease pathogen(American Society for Microbiology, 2024) Zhang, Jun-Jie; Raghunandanan, Sajith; Wang, Qian; Priya, Raj; Alanazi, Fuad; Lou, Yongliang; Yang, X. Frank; Microbiology and Immunology, School of MedicineGlycerol utilization as a carbohydrate source by Borreliella burgdorferi, the Lyme disease spirochete, is critical for its successful colonization and persistence in the tick vector. The expression of the glpFKD (glp) operon, which encodes proteins for glycerol uptake/utilization, must be tightly regulated during the enzootic cycle of B. burgdorferi. Previous studies have established that the second messenger cyclic di-GMP (c-di-GMP) is required for the activation of glp expression, while an alternative sigma factor RpoS acts as a negative regulator for glp expression. In the present study, we report identification of a cis element within the 5´ untranslated region of glp that exerts negative regulation of glp expression. Further genetic screen of known and predicted DNA-binding proteins encoded in the genome of B. burgdorferi uncovered that overexpressing Borrelia host adaptation regulator (BadR), a known global regulator, dramatically reduced glp expression. Similarly, the badR mutant significantly increased glp expression. Subsequent electrophoretic mobility shift assay analyses demonstrated that BadR directly binds to this cis element, thereby repressing glp independent of RpoS-mediated repression. The efficiency of BadR binding was further assessed in the presence of c-di-GMP and various carbohydrates. This finding highlights multi-layered positive and negative regulatory mechanisms employed by B. burgdorferi to synchronize glp expression throughout its enzootic cycle.IMPORTANCEBorreliella burgdorferi, the Lyme disease pathogen, must modulate its gene expression differentially to adapt successfully to its two disparate hosts. Previous studies have demonstrated that the glycerol uptake and utilization operon, glpFKD, plays a crucial role in spirochetal survival within ticks. However, the glpFKD expression must be repressed when B. burgdorferi transitions to the mammalian host. In this study, we identified a specific cis element responsible for the repression of glpFKD. We further pinpointed Borrelia host adaptation regulator as the direct binding protein to this cis element, thereby repressing glpFKD expression. This discovery paves the way for a deeper exploration of how zoonotic pathogens sense distinct hosts and switch their carbon source utilization during transmission.Item Blood lead level in Chinese adults with and without coronary artery disease(China Science, 2021) Li, Shi-Hong; Zhang, Hong-Ju; Li, Xiao-Dong; Cui, Jian; Cheng, Yu-Tong; Wang, Qian; Wang, Su; Krittanawong, Chayakrit; El-Am, Edward A.; Bou Chaaya, Rody G.; Wu, Xiang-Yu; Gu, Wei; Liu, Hong-Hong; Yan, Xian-Liang; Li, Zhi-Zhong; Yang, Shi-Wei; Sun, Tao; Medicine, School of MedicineBackground: The Trial to Assess Chelation Therapy study found that edetate disodium (disodium ethylenediaminetetraacetic acid) chelation therapy significantly reduced the incidence of cardiac events in stable post-myocardial infarction patients, and a body of epidemiological data has shown that accumulation of biologically active metals, such as lead and cadmium, is an important risk factor for cardiovascular disease. However, limited studies have focused on the relationship between angiographically diagnosed coronary artery disease (CAD) and lead exposure. This study compared blood lead level (BLL) in Chinese patients with and without CAD. Methods: In this prospective, observational study, 450 consecutive patients admitted to Beijing Anzhen Hospital with suspected CAD from November 1, 2018, to January 30, 2019, were enrolled. All patients underwent coronary angiography, and an experienced heart team calculated the SYNTAX scores (SXscore) for all available coronary angiograms. BLLs were determined with atomic absorption spectrophotometry and compared between patients with angiographically diagnosed CAD and those without CAD. Results: In total, 343 (76%) patients had CAD, of whom 42% had low (0-22), 22% had intermediate (23-32), and 36% had high (≥ 33) SXscore. BLLs were 36.8 ± 16.95 μg/L in patients with CAD and 31.2 ± 15.75 μg/L in those without CAD (P = 0.003). When BLLs were categorized into three groups (low, middle, high), CAD prevalence increased with increasing BLLs (P < 0.05). In the multivariate regression model, BLLs were associated with CAD (odds ratio (OR): 1.023, 95% confidence interval (CI): 1.008-1.039; P = 0.0017). OR in the high versus low BLL group was 2.36 (95% CI: 1.29-4.42,P = 0.003). Furthermore, BLLs were independently associated with intermediate and high SXscore (adjusted OR: 1.050, 95% CI: 1.036-1.066; P < 0.0001). Conclusion: BLLs were significantly associated with angiographically diagnosed CAD. Furthermore, BLLs showed excellent predictive value for SXscore, especially for complex coronary artery lesions.Item Glucocorticoid Receptor β Acts As a Co-activator of T-Cell Factor 4 and Enhances Glioma Cell Proliferation(Springer, 2015-12) Wang, Qian; Lu, Pei-Hua; Shi, Zhi-Feng; Xu, Yan-Juan; Xiang, Jie; Wang, Yan-Xia; Deng, Ling-Xiao; Xie, Ping; Yin, Ying; Zhang, Bin; Mu, Hui-Jun; Qiao, Wei-Zhen; Cui, Hua; Zou, Jian; Department of Neurological Surgery, IU School of MedicineWe previously reported that glucocorticoid receptor β (GRβ) regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of β-catenin/T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional activity. The aim of this study was to characterize the mechanism behind cross-talk between GRβ and β-catenin/TCF in the progression of glioma. Here, we reported that GRβ knockdown reduced U118 and Shg44 glioma cell proliferation in vitro and in vivo. Mechanistically, we found that GRβ knockdown decreased TCF/LEF transcriptional activity without affecting β-catenin/TCF complex. Both GRα and GRβ directly interact with TCF-4, while only GRβ is required for sustaining TCF/LEF activity under hormone-free condition. GRβ bound to the N-terminus domain of TCF-4 its influence on Wnt signaling required both ligand- and DNA-binding domains (LBD and DBD, respectively). GRβ and TCF-4 interaction is enough to maintain the TCF/LEF activity at a high level in the absence of β-catenin stabilization. Taken together, these results suggest a novel cross-talk between GRβ and TCF-4 which regulates Wnt signaling and the proliferation in gliomas.Item Insight into the Dual Functions of Bacterial Enhancer-Binding Protein Rrp2 of Borrelia burgdorferi(American Society for Microbiology, 2016-05-15) Yin, Yanping; Yang, Youyun; Xiang, Xuwu; Wang, Qian; Yang, Zhang-Nv; Blevins, Jon; Lou, Yongliang; Yang, X. Frank; Department of Microbiology & Immunology, IU School of MedicineIt is well established that the RpoN-RpoS sigma factor (σ(54)-σ(S)) cascade plays an essential role in differential gene expression during the enzootic cycle of Borrelia burgdorferi, the causative agent of Lyme disease. The RpoN-RpoS pathway is activated by the response regulator/σ(54)-dependent activator (also called bacterial enhancer-binding protein [bEBP]) Rrp2. One unique feature of Rrp2 is that this activator is essential for cell replication, whereas RpoN-RpoS is dispensable for bacterial growth. How Rrp2 controls cell replication, a function that is independent of RpoN-RpoS, remains to be elucidated. In this study, by generating a series of conditional rrp2 mutant strains, we demonstrated that the N-terminal receiver domain of Rrp2 is required for spirochetal growth. Furthermore, a D52A point mutation at the phosphorylation site within the N terminus of Rrp2 abolished cell replication. Mutation of the ATPase motif within the central domain of Rrp2 did not affect spirochetal replication, indicating that phosphorylation-dependent ATPase activity of Rrp2 for σ(54) activation is not required for cell growth. However, deletion of the C-terminal domain or a 16-amino-acid truncation of the helix-turn-helix (HTH) DNA-binding motif within the C-terminal domain of Rrp2 abolished spirochetal replication. It was shown that constitutive expression of rpoS is deleterious to borrelial growth. We showed that the essential nature of Rrp2 is not due to an effect on rpoS These data suggest that phosphorylation-dependent oligomerization and DNA binding of Rrp2 likely function as a repressor, independently of the activation of σ(54), controlling an essential step of cell replication in B. burgdorferi IMPORTANCE: Bacterial enhancer-binding proteins (bEBPs) are a unique group of transcriptional activators specifically required for σ(54)-dependent gene transcription. This work demonstrates that the B. burgdorferi bEBP, Rrp2, has an additional function that is independent of σ(54), that of its essentiality for spirochetal growth, and such a function is dependent on its N-terminal signal domain and C-terminal DNA-binding domain. These findings expand our knowledge on bEBP and provide a foundation to further study the underlying mechanism of this new function of bEBP.Item Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer's disease(Wiley, 2022) Horgusluoglu, Emrin; Neff, Ryan; Song, Won-Min; Wang, Minghui; Wang, Qian; Arnold, Matthias; Krumsiek, Jan; Galindo-Prieto, Beatriz; Ming, Chen; Nho, Kwangsik; Kastenmüller, Gabi; Han, Xianlin; Baillie, Rebecca; Zeng, Qi; Andrews, Shea; Cheng, Haoxiang; Hao, Ke; Goate, Alison; Bennett, David A.; Saykin, Andrew J.; Kaddurah-Daouk, Rima; Zhang, Bin; Alzheimer's Disease Neuroimaging Initiative (ADNI); Alzheimer Disease Metabolomics Consortium; Radiology and Imaging Sciences, School of MedicineMetabolites, the biochemical products of the cellular process, can be used to measure alterations in biochemical pathways related to the pathogenesis of Alzheimer's disease (AD). However, the relationships between systemic abnormalities in metabolism and the pathogenesis of AD are poorly understood. In this study, we aim to identify AD‐specific metabolomic changes and their potential upstream genetic and transcriptional regulators through an integrative systems biology framework for analyzing genetic, transcriptomic, metabolomic, and proteomic data in AD. Metabolite co‐expression network analysis of the blood metabolomic data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) shows short‐chain acylcarnitines/amino acids and medium/long‐chain acylcarnitines are most associated with AD clinical outcomes, including episodic memory scores and disease severity. Integration of the gene expression data in both the blood from the ADNI and the brain from the Accelerating Medicines Partnership Alzheimer's Disease (AMP‐AD) program reveals ABCA1 and CPT1A are involved in the regulation of acylcarnitines and amino acids in AD. Gene co‐expression network analysis of the AMP‐AD brain RNA‐seq data suggests the CPT1A‐ and ABCA1‐centered subnetworks are associated with neuronal system and immune response, respectively. Increased ABCA1 gene expression and adiponectin protein, a regulator of ABCA1, correspond to decreased short‐chain acylcarnitines and amines in AD in the ADNI. In summary, our integrated analysis of large‐scale multiomics data in AD systematically identifies novel metabolites and their potential regulators in AD and the findings pave a way for not only developing sensitive and specific diagnostic biomarkers for AD but also identifying novel molecular mechanisms of AD pathogenesis.Item Lacrimal gland budding requires PI3K-dependent suppression of EGF signaling(American Association for the Advancement of Science, 2021-06-30) Wang, Qian; Tao, Chenqi; Hannan, Abdul; Yoon, Sungtae; Min, Xuanyu; Peregrin, John; Qu, Xiuxia; Li, Hongge; Yu, Honglian; Zhao, Jean; Zhang, Xin; Surgery, School of MedicineThe patterning of epithelial buds is determined by the underlying signaling network. Here, we study the cross-talk between phosphoinositide 3-kinase (PI3K) and Ras signaling during lacrimal gland budding morphogenesis. Our results show that PI3K is activated by both the p85-mediated insulin-like growth factor (IGF) and Ras-mediated fibroblast growth factor (FGF) signaling. On the other hand, PI3K also promotes extracellular signal-regulated kinase (ERK) signaling via a direct interaction with Ras. Both PI3K and ERK are upstream regulators of mammalian target of rapamycin (mTOR), and, together, they prevent expansion of epidermal growth factor (EGF) receptor expression from the lacrimal gland stalk to the bud region. We further show that this suppression of EGF signaling is necessary for induction of lacrimal gland buds. These results reveal that the interplay between PI3K, mitogen-activated protein kinase, and mTOR mediates the cross-talk among FGF, IGF, and EGF signaling in support of lacrimal gland development.Item Systems modeling of white matter microstructural abnormalities in Alzheimer's disease(Elsevier, 2020-02-04) Horgusluoglu-Moloch, Emrin; Xiao, Gaoyu; Wang, Minghui; Wang, Qian; Zhou, Xianxiao; Nho, Kwangsik; Saykin, Andrew J.; Schadt, Eric; Zhang, Bin; Alzheimer's Disease Neuroimaging Initiative (ADNI); Radiology and Imaging Sciences, School of MedicineINTRODUCTION: Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD). However, it is unclear which brain regions have the strongest WM changes in presymptomatic AD and what biological processes underlie WM abnormality during disease progression. METHODS: We developed a systems biology framework to integrate matched diffusion tensor imaging (DTI), genetic and transcriptomic data to investigate regional vulnerability to AD and identify genetic risk factors and gene subnetworks underlying WM abnormality in AD. RESULTS: We quantified regional WM abnormality and identified most vulnerable brain regions. A SNP rs2203712 in CELF1 was most significantly associated with several DTI-derived features in the hippocampus, the top ranked brain region. An immune response gene subnetwork in the blood was most correlated with DTI features across all the brain regions. DISCUSSION: Incorporation of image analysis with gene network analysis enhances our understanding of disease progression and facilitates identification of novel therapeutic strategies for AD.